Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 882

2.

Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in saccharomyces cerevisiae.

Schüller C, Mamnun YM, Wolfger H, Rockwell N, Thorner J, Kuchler K.

Mol Biol Cell. 2007 Dec;18(12):4932-44. Epub 2007 Sep 19.

3.

Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.

Teixeira MC, Dias PJ, Monteiro PT, Sala A, Oliveira AL, Freitas AT, Sá-Correia I.

Mol Biosyst. 2010 Dec;6(12):2471-81. doi: 10.1039/c004881j. Epub 2010 Oct 11.

PMID:
20938527
4.

The ATP-binding cassette multidrug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3.

Mahé Y, Parle-McDermott A, Nourani A, Delahodde A, Lamprecht A, Kuchler K.

Mol Microbiol. 1996 Apr;20(1):109-17.

PMID:
8861209
7.
8.

Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.

Bajwa PK, Ho CY, Chan CK, Martin VJ, Trevors JT, Lee H.

Antonie Van Leeuwenhoek. 2013 Jun;103(6):1281-95. doi: 10.1007/s10482-013-9909-1. Epub 2013 Mar 29.

PMID:
23539198
9.

A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance.

Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G.

Yeast. 2006 Apr 30;23(6):455-64.

11.

Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.

Liu ZL, Ma M, Song M.

Mol Genet Genomics. 2009 Sep;282(3):233-44. doi: 10.1007/s00438-009-0461-7. Epub 2009 Jun 11.

12.

Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast.

Song M, Ouyang Z, Liu ZL.

IET Syst Biol. 2009 May;3(3):203-18. doi: 10.1049/iet-syb.2008.0089.

13.

Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.

Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49. Epub 2005 Oct 13.

PMID:
16222531
14.

5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production.

Sehnem NT, Machado Ada S, Leite FC, Pita Wde B, de Morais MA Jr, Ayub MA.

Bioresour Technol. 2013 Apr;133:190-6. doi: 10.1016/j.biortech.2013.01.063. Epub 2013 Jan 31.

15.

Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.

Liu ZL.

Appl Microbiol Biotechnol. 2006 Nov;73(1):27-36. Epub 2006 Oct 7. Review.

PMID:
17028874
16.

Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae.

Katzmann DJ, Hallstrom TC, Voet M, Wysock W, Golin J, Volckaert G, Moye-Rowley WS.

Mol Cell Biol. 1995 Dec;15(12):6875-83.

17.

Yeast response and tolerance to benzoic acid involves the Gcn4- and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1.

Godinho CP, Mira NP, Cabrito TR, Teixeira MC, Alasoo K, Guerreiro JF, Sá-Correia I.

Appl Microbiol Biotechnol. 2017 Jun;101(12):5005-5018. doi: 10.1007/s00253-017-8277-6. Epub 2017 Apr 13.

18.

Responses of pathogenic and nonpathogenic yeast species to steroids reveal the functioning and evolution of multidrug resistance transcriptional networks.

Banerjee D, Lelandais G, Shukla S, Mukhopadhyay G, Jacq C, Devaux F, Prasad R.

Eukaryot Cell. 2008 Jan;7(1):68-77. Epub 2007 Nov 9.

19.

Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.

Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S.

Appl Microbiol Biotechnol. 2008 Dec;81(4):743-53. doi: 10.1007/s00253-008-1702-0. Epub 2008 Sep 23.

PMID:
18810428
20.

Integrating phenotypic and expression profiles to map arsenic-response networks.

Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B.

Genome Biol. 2004;5(12):R95. Epub 2004 Nov 29.

Supplemental Content

Support Center