Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling.

Frank T, Rutherford MA, Strenzke N, Neef A, Pangršič T, Khimich D, Fejtova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T.

Neuron. 2010 Nov 18;68(4):724-38. doi: 10.1016/j.neuron.2010.10.027. Erratum in: Neuron. 2010 Dec 22;68(6):1202. Fetjova, Anna [corrected to Fejtova, Anna].

2.

Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse.

Jing Z, Rutherford MA, Takago H, Frank T, Fejtova A, Khimich D, Moser T, Strenzke N.

J Neurosci. 2013 Mar 6;33(10):4456-67. doi: 10.1523/JNEUROSCI.3491-12.2013.

3.

Visualizing synaptic vesicle turnover and pool refilling driven by calcium nanodomains at presynaptic active zones of ribbon synapses.

Vaithianathan T, Matthews G.

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8655-60. doi: 10.1073/pnas.1323962111. Epub 2014 May 27.

4.

Bassoon speeds vesicle reloading at a central excitatory synapse.

Hallermann S, Fejtova A, Schmidt H, Weyhersmüller A, Silver RA, Gundelfinger ED, Eilers J.

Neuron. 2010 Nov 18;68(4):710-23. doi: 10.1016/j.neuron.2010.10.026.

5.

Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis.

Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, Südhof TC.

Nature. 2003 Jun 26;423(6943):939-48.

PMID:
12827191
6.

Sharp Ca²⁺ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses.

Graydon CW, Cho S, Li GL, Kachar B, von Gersdorff H.

J Neurosci. 2011 Nov 16;31(46):16637-50. doi: 10.1523/JNEUROSCI.1866-11.2011.

7.

Functional Roles of Complexin3 and Complexin4 at Mouse Photoreceptor Ribbon Synapses.

Babai N, Sendelbeck A, Regus-Leidig H, Fuchs M, Mertins J, Reim K, Brose N, Feigenspan A, Brandstätter JH.

J Neurosci. 2016 Jun 22;36(25):6651-67. doi: 10.1523/JNEUROSCI.4335-15.2016.

8.

Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones.

Jung S, Oshima-Takago T, Chakrabarti R, Wong AB, Jing Z, Yamanbaeva G, Picher MM, Wojcik SM, Göttfert F, Predoehl F, Michel K, Hell SW, Schoch S, Strenzke N, Wichmann C, Moser T.

Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3141-9. doi: 10.1073/pnas.1417207112. Epub 2015 Jun 1.

9.

RIM1/2-Mediated Facilitation of Cav1.4 Channel Opening Is Required for Ca2+-Stimulated Release in Mouse Rod Photoreceptors.

Grabner CP, Gandini MA, Rehak R, Le Y, Zamponi GW, Schmitz F.

J Neurosci. 2015 Sep 23;35(38):13133-47. doi: 10.1523/JNEUROSCI.0658-15.2015.

10.

Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon.

Altrock WD, tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fässler R, Richter K, Boeckers TM, Potschka H, Brandt C, Löscher W, Grimberg D, Dresbach T, Hempelmann A, Hassan H, Balschun D, Frey JU, Brandstätter JH, Garner CC, Rosenmund C, Gundelfinger ED.

Neuron. 2003 Mar 6;37(5):787-800.

11.

Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse.

Mercer AJ, Szalewski RJ, Jackman SL, Van Hook MJ, Thoreson WB.

J Neurophysiol. 2012 Jun;107(12):3468-78. doi: 10.1152/jn.00779.2011. Epub 2012 Mar 21.

12.

Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming.

Snellman J, Mehta B, Babai N, Bartoletti TM, Akmentin W, Francis A, Matthews G, Thoreson W, Zenisek D.

Nat Neurosci. 2011 Jul 24;14(9):1135-41. doi: 10.1038/nn.2870.

13.

Munc13-independent vesicle priming at mouse photoreceptor ribbon synapses.

Cooper B, Hemmerlein M, Ammermüller J, Imig C, Reim K, Lipstein N, Kalla S, Kawabe H, Brose N, Brandstätter JH, Varoqueaux F.

J Neurosci. 2012 Jun 6;32(23):8040-52. doi: 10.1523/JNEUROSCI.4240-11.2012.

14.

Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse.

Brandt A, Khimich D, Moser T.

J Neurosci. 2005 Dec 14;25(50):11577-85.

15.

Synaptic ribbons: machines for priming vesicle release?

Pelassa I, Lagnado L.

Curr Biol. 2011 Oct 11;21(19):R819-21. doi: 10.1016/j.cub.2011.08.038.

16.

Proton-mediated block of Ca2+ channels during multivesicular release regulates short-term plasticity at an auditory hair cell synapse.

Cho S, von Gersdorff H.

J Neurosci. 2014 Nov 26;34(48):15877-87. doi: 10.1523/JNEUROSCI.2304-14.2014.

17.

Exocytotic machineries of vestibular type I and cochlear ribbon synapses display similar intrinsic otoferlin-dependent Ca2+ sensitivity but a different coupling to Ca2+ channels.

Vincent PF, Bouleau Y, Safieddine S, Petit C, Dulon D.

J Neurosci. 2014 Aug 13;34(33):10853-69. doi: 10.1523/JNEUROSCI.0947-14.2014.

18.

Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity.

Mochida S.

Neurosci Res. 2011 May;70(1):16-23. doi: 10.1016/j.neures.2011.03.005. Epub 2011 Mar 29. Review.

PMID:
21453732
19.

Functional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses.

Johnson SL, Franz C, Knipper M, Marcotti W.

J Physiol. 2009 Apr 15;587(Pt 8):1715-26. doi: 10.1113/jphysiol.2009.168542. Epub 2009 Feb 23.

20.

Otoferlin is critical for a highly sensitive and linear calcium-dependent exocytosis at vestibular hair cell ribbon synapses.

Dulon D, Safieddine S, Jones SM, Petit C.

J Neurosci. 2009 Aug 26;29(34):10474-87. doi: 10.1523/JNEUROSCI.1009-09.2009.

Supplemental Content

Support Center