Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Suppression of statin effectiveness by copper and zinc in yeast and human cells.

Fowler DM, Cooper SJ, Stephany JJ, Hendon N, Nelson S, Fields S.

Mol Biosyst. 2011 Feb;7(2):533-44. doi: 10.1039/c0mb00166j. Epub 2010 Nov 17.

2.

Synergistic antifungal activity of statin-azole associations as witnessed by Saccharomyces cerevisiae- and Candida utilis-bioassays and ergosterol quantification.

Cabral ME, Figueroa LI, Fariña JI.

Rev Iberoam Micol. 2013 Jan 3;30(1):31-8. doi: 10.1016/j.riam.2012.09.006. Epub 2012 Oct 13.

PMID:
23069981
3.

The effects of statins on the mevalonic acid pathway in recombinant yeast strains expressing human HMG-CoA reductase.

Maciejak A, Leszczynska A, Warchol I, Gora M, Kaminska J, Plochocka D, Wysocka-Kapcinska M, Tulacz D, Siedlecka J, Swiezewska E, Sojka M, Danikiewicz W, Odolczyk N, Szkopinska A, Sygitowicz G, Burzynska B.

BMC Biotechnol. 2013 Aug 30;13:68. doi: 10.1186/1472-6750-13-68.

4.
5.

Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences.

Lennernäs H, Fager G.

Clin Pharmacokinet. 1997 May;32(5):403-25. Review.

PMID:
9160173
7.

Functional expression of human HMG-CoA reductase in Saccharomyces cerevisiae: a system to analyse normal and mutated versions of the enzyme in the context of statin treatment.

Wysocka-Kapcinska M, Lutyk-Nadolska J, Kiliszek M, Plochocka D, Maciag M, Leszczynska A, Rytka J, Burzynska B.

J Appl Microbiol. 2009 Mar;106(3):895-902. doi: 10.1111/j.1365-2672.2008.04060.x. Epub 2009 Jan 27.

8.
10.

Investigating the effects of statins on cellular lipid metabolism using a yeast expression system.

Leszczynska A, Burzynska B, Plochocka D, Kaminska J, Zimnicka M, Kania M, Kiliszek M, Wysocka-Kapcinska M, Danikiewicz W, Szkopinska A.

PLoS One. 2009 Dec 30;4(12):e8499. doi: 10.1371/journal.pone.0008499.

11.
12.

Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs.

Manzoni M, Rollini M.

Appl Microbiol Biotechnol. 2002 Apr;58(5):555-64. Epub 2002 Feb 14. Review.

PMID:
11956737
13.

Simvastatin reduces ergosterol levels, inhibits growth and causes loss of mtDNA in Candida glabrata.

Westermeyer C, Macreadie IG.

FEMS Yeast Res. 2007 May;7(3):436-41. Epub 2007 Jan 19.

14.

The isoprenoid pathway and transcriptional response to its inhibitors in the yeast Saccharomyces cerevisiae.

Kuranda K, François J, Palamarczyk G.

FEMS Yeast Res. 2010 Feb;10(1):14-27. doi: 10.1111/j.1567-1364.2009.00560.x. Epub 2009 Aug 5. Review.

15.

[Regulation role of sterol C-24 methyltransferase and sterol C-8 isomerase in the ergosterol biosynthesis of Saccharomyces cerevisiae].

Zhang Z, He X, Li W, Lu Y, Wang Z, Zhang B.

Wei Sheng Wu Xue Bao. 2009 Aug;49(8):1063-8. Chinese.

PMID:
19835168
16.

Tocotrienols potentiate lovastatin-mediated growth suppression in vitro and in vivo.

McAnally JA, Gupta J, Sodhani S, Bravo L, Mo H.

Exp Biol Med (Maywood). 2007 Apr;232(4):523-31.

PMID:
17392488
17.
18.

[The growth of Rhodotorula rubra yeasts and their synthesis of ergosterol on media with lovastatin].

Baranova NA, Kreĭner VG, Egorov NS.

Antibiot Khimioter. 1996;41(11):3-6. Russian.

PMID:
9214284
19.

General resistance to sterol biosynthesis inhibitors in Saccharomyces cerevisiae.

Ladevèze V, Marcireau C, Delourme D, Karst F.

Lipids. 1993 Oct;28(10):907-12.

PMID:
8246690
20.

Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway.

Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M.

FEBS Lett. 1996 Aug 26;392(2):161-5.

Supplemental Content

Support Center