Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Mice lacking the Cβ subunit of PKA are resistant to angiotensin II-induced cardiac hypertrophy and dysfunction.

Enns LC, Bible KL, Emond MJ, Ladiges WC.

BMC Res Notes. 2010 Nov 16;3:307. doi: 10.1186/1756-0500-3-307.

2.

Protein kinase A is a target for aging and the aging heart.

Enns LC, Pettan-Brewer C, Ladiges W.

Aging (Albany NY). 2010 Apr;2(4):238-43.

3.

NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII.

Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, Möllencamp J, Dybkova N, Islam T, Shah AM, Maier LS.

J Mol Cell Cardiol. 2014 Oct;75:206-15. doi: 10.1016/j.yjmcc.2014.07.011. Epub 2014 Jul 27.

PMID:
25073061
4.
5.

Attenuation of age-related metabolic dysfunction in mice with a targeted disruption of the Cbeta subunit of protein kinase A.

Enns LC, Morton JF, Mangalindan RS, McKnight GS, Schwartz MW, Kaeberlein MR, Kennedy BK, Rabinovitch PS, Ladiges WC.

J Gerontol A Biol Sci Med Sci. 2009 Dec;64(12):1221-31. doi: 10.1093/gerona/glp133. Epub 2009 Sep 23.

6.

Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension.

Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T.

Circulation. 2001 Jul 17;104(3):346-51.

7.

The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy.

Taglieri DM, Johnson KR, Burmeister BT, Monasky MM, Spindler MJ, DeSantiago J, Banach K, Conklin BR, Carnegie GK.

J Mol Cell Cardiol. 2014 Jan;66:27-40. doi: 10.1016/j.yjmcc.2013.10.010. Epub 2013 Oct 23.

8.

Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction.

Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z, Oudit GY.

Circulation. 2010 Aug 17;122(7):717-28, 18 p following 728. doi: 10.1161/CIRCULATIONAHA.110.955369. Epub 2010 Aug 2.

9.

Stimulation of c-Rel transcriptional activity by PKA catalytic subunit beta.

Yu SH, Chiang WC, Shih HM, Wu KJ.

J Mol Med (Berl). 2004 Sep;82(9):621-8. Epub 2004 Jun 9.

PMID:
15197457
10.

Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2.

Wang N, Frank GD, Ding R, Tan Z, Rachakonda A, Pandolfi PP, Senbonmatsu T, Landon EJ, Inagami T.

PLoS One. 2012;7(4):e35632. doi: 10.1371/journal.pone.0035632. Epub 2012 Apr 27.

11.

Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling.

Izumiya Y, Kim S, Izumi Y, Yoshida K, Yoshiyama M, Matsuzawa A, Ichijo H, Iwao H.

Circ Res. 2003 Oct 31;93(9):874-83. Epub 2003 Oct 9. Erratum in: Circ Res. 2016 Mar 4;118(5):e32.

12.

Senescence marker protein 30 inhibits angiotensin II-induced cardiac hypertrophy and diastolic dysfunction.

Misaka T, Suzuki S, Miyata M, Kobayashi A, Ishigami A, Shishido T, Saitoh S, Kubota I, Takeishi Y.

Biochem Biophys Res Commun. 2013 Sep 13;439(1):142-7. doi: 10.1016/j.bbrc.2013.08.002. Epub 2013 Aug 9.

13.

Cross-talk between PKA-Cβ and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi.

Susuki-Miyata S, Miyata M, Lee BC, Xu H, Kai H, Yan C, Li JD.

Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1800-9. doi: 10.1073/pnas.1418716112. Epub 2015 Mar 23.

14.

Identification of protein kinase A catalytic subunit beta as a novel binding partner of p73 and regulation of p73 function.

Hanamoto T, Ozaki T, Furuya K, Hosoda M, Hayashi S, Nakanishi M, Yamamoto H, Kikuchi H, Todo S, Nakagawara A.

J Biol Chem. 2005 Apr 29;280(17):16665-75. Epub 2005 Feb 21.

15.

PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling.

Yang JH, Polanowska-Grabowska RK, Smith JS, Shields CW 4th, Saucerman JJ.

J Mol Cell Cardiol. 2014 Jan;66:83-93. doi: 10.1016/j.yjmcc.2013.11.001. Epub 2013 Nov 10.

16.

Cardiac hypertrophy is associated with altered thioredoxin and ASK-1 signaling in a mouse model of menopause.

Ebrahimian T, Sairam MR, Schiffrin EL, Touyz RM.

Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1481-8. doi: 10.1152/ajpheart.00163.2008. Epub 2008 Aug 1.

17.

An angiotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy.

Zhai P, Galeotti J, Liu J, Holle E, Yu X, Wagner T, Sadoshima J.

Circ Res. 2006 Sep 1;99(5):528-36. Epub 2006 Aug 10.

18.

Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction.

Fan D, Takawale A, Basu R, Patel V, Lee J, Kandalam V, Wang X, Oudit GY, Kassiri Z.

Cardiovasc Res. 2014 Jul 15;103(2):268-80. doi: 10.1093/cvr/cvu072. Epub 2014 Apr 1.

PMID:
24692173
19.

Isoform-specific regulation of immune cell reactivity by the catalytic subunit of protein kinase A (PKA).

Funderud A, Aas-Hanssen K, Aksaas AK, Hafte TT, Corthay A, Munthe LA, Orstavik S, Skålhegg BS.

Cell Signal. 2009 Feb;21(2):274-81. doi: 10.1016/j.cellsig.2008.10.013. Epub 2008 Oct 29.

PMID:
19000925
20.

Role of the renin-angiotensin system in cardiac hypertrophy.

Yamazaki T, Komuro I, Yazaki Y.

Am J Cardiol. 1999 Jun 17;83(12A):53H-57H. Review.

PMID:
10750588

Supplemental Content

Support Center