Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Trivalent arsenicals and glucose use different translocation pathways in mammalian GLUT1.

Jiang X, McDermott JR, Ajees AA, Rosen BP, Liu Z.

Metallomics. 2010 Mar;2(3):211-9. doi: 10.1039/b920471g. Epub 2009 Dec 8.

2.

Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid.

Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP.

Biochem Biophys Res Commun. 2006 Dec 15;351(2):424-30. Epub 2006 Oct 17.

3.
4.

Differential regulation of GLUT1 activity in human corneal limbal epithelial cells and fibroblasts.

Kuipers DP, Scripture JP, Gunnink SM, Salie MJ, Schotanus MP, Ubels JL, Louters LL.

Biochimie. 2013 Feb;95(2):258-63. doi: 10.1016/j.biochi.2012.09.022. Epub 2012 Sep 23.

5.

Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.

Pérez A, Ojeda P, Valenzuela X, Ortega M, Sánchez C, Ojeda L, Castro M, Cárcamo JG, Rauch MC, Concha II, Rivas CI, Vera JC, Reyes AM.

Am J Physiol Cell Physiol. 2009 Jul;297(1):C86-93. doi: 10.1152/ajpcell.00501.2008. Epub 2009 Apr 22.

PMID:
19386788
6.

Dual action of phenylarsine oxide on the glucose transport activity of GLUT1.

Scott J, Opejin A, Tidball A, Stehouwer N, Rekman J, Louters LL.

Chem Biol Interact. 2009 Dec 10;182(2-3):199-203. doi: 10.1016/j.cbi.2009.08.008. Epub 2009 Aug 15.

PMID:
19686715
7.
8.

Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer.

Iserovich P, Wang D, Ma L, Yang H, Zuniga FA, Pascual JM, Kuang K, De Vivo DC, Fischbarg J.

J Biol Chem. 2002 Aug 23;277(34):30991-7. Epub 2002 May 24.

9.

Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1.

Kasahara T, Maeda M, Boles E, Kasahara M.

Biochim Biophys Acta. 2009 May;1788(5):1051-5. doi: 10.1016/j.bbamem.2009.01.014. Epub 2009 Feb 3.

10.

Pathogenic mutations causing glucose transport defects in GLUT1 transporter: The role of intermolecular forces in protein structure-function.

Raja M, Kinne RK.

Biophys Chem. 2015 May-Jun;200-201:9-17. doi: 10.1016/j.bpc.2015.03.005. Epub 2015 Mar 25. Review.

PMID:
25863194
11.
12.

n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier.

Pifferi F, Jouin M, Alessandri JM, Haedke U, Roux F, Perrière N, Denis I, Lavialle M, Guesnet P.

Prostaglandins Leukot Essent Fatty Acids. 2007 Nov-Dec;77(5-6):279-86. Epub 2007 Nov 26.

PMID:
18042368
13.

Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter.

Halmos T, Santarromana M, Antonakis K, Scherman D.

Eur J Pharmacol. 1996 Dec 30;318(2-3):477-84.

PMID:
9016941
14.

Determinants of ligand binding affinity and cooperativity at the GLUT1 endofacial site.

Robichaud T, Appleyard AN, Herbert RB, Henderson PJ, Carruthers A.

Biochemistry. 2011 Apr 19;50(15):3137-48. doi: 10.1021/bi1020327. Epub 2011 Mar 25.

15.

Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae.

Liu Z, Boles E, Rosen BP.

J Biol Chem. 2004 Apr 23;279(17):17312-8. Epub 2004 Feb 14.

16.

Curcumin directly inhibits the transport activity of GLUT1.

Gunnink LK, Alabi OD, Kuiper BD, Gunnink SM, Schuiteman SJ, Strohbehn LE, Hamilton KE, Wrobel KE, Louters LL.

Biochimie. 2016 Jun;125:179-85. doi: 10.1016/j.biochi.2016.03.014. Epub 2016 Mar 31.

17.

Docking studies show that D-glucose and quercetin slide through the transporter GLUT1.

Cunningham P, Afzal-Ahmed I, Naftalin RJ.

J Biol Chem. 2006 Mar 3;281(9):5797-803. Epub 2005 Dec 27.

18.

Functional studies of threonine 310 mutations in Glut1: T310I is pathogenic, causing Glut1 deficiency.

Wang D, Pascual JM, Iserovich P, Yang H, Ma L, Kuang K, Zuniga FA, Sun RP, Swaroop KM, Fischbarg J, De Vivo DC.

J Biol Chem. 2003 Dec 5;278(49):49015-21. Epub 2003 Sep 16.

19.

Resolution of the direct interaction with and inhibition of the human GLUT1 hexose transporter by resveratrol from its effect on glucose accumulation.

Salas M, Obando P, Ojeda L, Ojeda P, Pérez A, Vargas-Uribe M, Rivas CI, Vera JC, Reyes AM.

Am J Physiol Cell Physiol. 2013 Jul 1;305(1):C90-9. doi: 10.1152/ajpcell.00387.2012. Epub 2013 Apr 24.

PMID:
23615963
20.

Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes.

Walton FS, Harmon AW, Paul DS, Drobná Z, Patel YM, Styblo M.

Toxicol Appl Pharmacol. 2004 Aug 1;198(3):424-33.

PMID:
15276423

Supplemental Content

Support Center