Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 67

1.

Stable-marriages algorithm for preprocessing phase maps with discontinuity sources.

Quiroga JA, González-Cano A, Bernabeu E.

Appl Opt. 1995 Aug 10;34(23):5029-38. doi: 10.1364/AO.34.005029.

PMID:
21052347
2.

Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm.

Buckland JR, Huntley JM, Turner SR.

Appl Opt. 1995 Aug 10;34(23):5100-8. doi: 10.1364/AO.34.005100.

PMID:
21052355
3.
4.

Reliable phase unwrapping algorithm based on rotational and direct compensators.

Heshmat S, Tomioka S, Nishiyama S.

Appl Opt. 2011 Nov 20;50(33):6225-33. doi: 10.1364/AO.50.006225.

PMID:
22108880
5.

Improved noise-immune phase-unwrapping algorithm.

Cusack R, Huntley JM, Goldrein HT.

Appl Opt. 1995 Feb 10;34(5):781-9. doi: 10.1364/AO.34.000781.

PMID:
21037595
6.

Phase unwrapping with the branch-cut method: role of phase-field direction.

Gutmann B, Weber H.

Appl Opt. 2000 Sep 10;39(26):4802-16.

PMID:
18350072
7.

Proposed algorithm for phase unwrapping.

He XY, Kang X, Tay CJ, Quan C, Shang HM.

Appl Opt. 2002 Dec 10;41(35):7422-8.

PMID:
12502299
8.

Two-dimensional phase unwrapping using a hybrid genetic algorithm.

Karout SA, Gdeisat MA, Burton DR, Lalor MJ.

Appl Opt. 2007 Feb 10;46(5):730-43.

PMID:
17279161
9.

Unwrapping magnetic resonance phase maps with Chebyshev polynomials.

Langley J, Zhao Q.

Magn Reson Imaging. 2009 Nov;27(9):1293-301. doi: 10.1016/j.mri.2009.05.013. Epub 2009 Jul 1.

PMID:
19574009
10.

Phase recovery from a single interferogram with closed fringes by phase unwrapping.

Muñoz-Maciel J, Casillas-Rodríguez FJ, Mora-González M, Peña-Lecona FG, Duran-Ramírez VM, Gómez-Rosas G.

Appl Opt. 2011 Jan 1;50(1):22-7. doi: 10.1364/AO.50.000022.

PMID:
21221155
11.

Spatial sign preprocessing: a simple way to impart moderate robustness to multivariate estimators.

Serneels S, De Nolf E, Van Espen PJ.

J Chem Inf Model. 2006 May-Jun;46(3):1402-9.

PMID:
16711760
12.

Fast algorithm for implementing the minimum-negativity constraint for Fourier spectrum extrapolation. Part 2.

Howard SJ.

Appl Opt. 1988 Aug 1;27(15):3190-6. doi: 10.1364/AO.27.003190.

PMID:
20531917
13.

Recursive approach to the moment-based phase unwrapping method.

Langley JA, Brice RG, Zhao Q.

Appl Opt. 2010 Jun 1;49(16):3096-101. doi: 10.1364/AO.49.003096.

PMID:
20517381
14.

Unwrapping of Digital Speckle-Pattern Interferometry Phase Maps by use of a Minimum L(0)-Norm Algorithm.

Ruiz PD, Kaufmann GH, Galizzi GE.

Appl Opt. 1998 Nov 10;37(32):7632-44.

PMID:
18301600
15.
16.

Phase unwrapping via graph cuts.

Bioucas-Dias JM, Valadão G.

IEEE Trans Image Process. 2007 Mar;16(3):698-709.

PMID:
17357730
17.

Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm.

Gorodnitsky IF, George JS, Rao BD.

Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51.

PMID:
8529554
18.

Evaluation of smoothing in an iterative lp-norm minimization algorithm for surface-based source localization of MEG.

Han J, Kim JS, Chung CK, Park KS.

Phys Med Biol. 2007 Aug 21;52(16):4791-803. Epub 2007 Jul 24.

PMID:
17671336
19.

Accelerating neural network training using weight extrapolations.

Kamarthi SV, Pittner S.

Neural Netw. 1999 Nov;12(9):1285-1299.

PMID:
12662633
20.

Residue vector, an approach to branch-cut placement in phase unwrapping: theoretical study.

Karout SA, Gdeisat MA, Burton DR, Lalor MJ.

Appl Opt. 2007 Jul 20;46(21):4712-27.

PMID:
17609719

Supplemental Content

Support Center