Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Inferring gene regulatory networks from asynchronous microarray data with AIRnet.

Oviatt D, Clement M, Snell Q, Sundberg K, Lai CW, Allen J, Roper R.

BMC Genomics. 2010 Nov 2;11 Suppl 2:S6. doi: 10.1186/1471-2164-11-S2-S6.

2.

Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks.

Li Y, Liu L, Bai X, Cai H, Ji W, Guo D, Zhu Y.

BMC Bioinformatics. 2010 Oct 19;11:520. doi: 10.1186/1471-2105-11-520.

3.

Cross-platform microarray data normalisation for regulatory network inference.

Sîrbu A, Ruskin HJ, Crane M.

PLoS One. 2010 Nov 12;5(11):e13822. doi: 10.1371/journal.pone.0013822.

4.

IRIS: a method for reverse engineering of regulatory relations in gene networks.

Morganella S, Zoppoli P, Ceccarelli M.

BMC Bioinformatics. 2009 Dec 23;10:444. doi: 10.1186/1471-2105-10-444.

5.

Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.

Wang M, Augusto Benedito V, Xuechun Zhao P, Udvardi M.

Mol Biosyst. 2010 Jun;6(6):988-98. doi: 10.1039/b917571g.

PMID:
20485743
6.

A novel procedure for statistical inference and verification of gene regulatory subnetwork.

Gong H, Klinger J, Damazyn K, Li X, Huang S.

BMC Bioinformatics. 2015;16 Suppl 7:S7. doi: 10.1186/1471-2105-16-S7-S7.

7.

Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress.

Taylor RC, Acquaah-Mensah G, Singhal M, Malhotra D, Biswal S.

PLoS Comput Biol. 2008 Aug 29;4(8):e1000166. doi: 10.1371/journal.pcbi.1000166.

8.

A network inference workflow applied to virulence-related processes in Salmonella typhimurium.

Taylor RC, Singhal M, Weller J, Khoshnevis S, Shi L, McDermott J.

Ann N Y Acad Sci. 2009 Mar;1158:143-58. doi: 10.1111/j.1749-6632.2008.03762.x.

PMID:
19348639
9.

Analysis and practical guideline of constraint-based boolean method in genetic network inference.

Saithong T, Bumee S, Liamwirat C, Meechai A.

PLoS One. 2012;7(1):e30232. doi: 10.1371/journal.pone.0030232.

10.

Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks.

Maraziotis IA, Dragomir A, Bezerianos A.

IET Syst Biol. 2007 Jan;1(1):41-50.

PMID:
17370428
11.

Fast calculation of pairwise mutual information for gene regulatory network reconstruction.

Qiu P, Gentles AJ, Plevritis SK.

Comput Methods Programs Biomed. 2009 May;94(2):177-80. doi: 10.1016/j.cmpb.2008.11.003.

PMID:
19167129
12.

Discovering time-lagged rules from microarray data using gene profile classifiers.

Gallo CA, Carballido JA, Ponzoni I.

BMC Bioinformatics. 2011 Apr 27;12:123. doi: 10.1186/1471-2105-12-123.

13.

Computational and experimental approaches for modeling gene regulatory networks.

Goutsias J, Lee NH.

Curr Pharm Des. 2007;13(14):1415-36. Review.

PMID:
17504165
14.

Inferring gene networks from time series microarray data using dynamic Bayesian networks.

Kim SY, Imoto S, Miyano S.

Brief Bioinform. 2003 Sep;4(3):228-35.

PMID:
14582517
15.

Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.

Shimamura T, Imoto S, Yamaguchi R, Miyano S.

Genome Inform. 2007;19:142-53.

PMID:
18546512
16.

svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification.

Zhang W, Edwards A, Fan W, Zhu D, Zhang K.

BMC Bioinformatics. 2010 Jun 22;11:338. doi: 10.1186/1471-2105-11-338.

17.

The impact of measurement errors in the identification of regulatory networks.

Fujita A, Patriota AG, Sato JR, Miyano S.

BMC Bioinformatics. 2009 Dec 13;10:412. doi: 10.1186/1471-2105-10-412.

18.

A reliable measure of similarity based on dependency for short time series: an application to gene expression networks.

Campiteli MG, Soriani FM, Malavazi I, Kinouchi O, Pereira CA, Goldman GH.

BMC Bioinformatics. 2009 Aug 28;10:270. doi: 10.1186/1471-2105-10-270.

19.

A sub-space greedy search method for efficient Bayesian Network inference.

Zhang Q, Cao Y, Li Y, Zhu Y, Sun SS, Guo D.

Comput Biol Med. 2011 Sep;41(9):763-70. doi: 10.1016/j.compbiomed.2011.06.012.

PMID:
21741635
20.

Quantitative inference of dynamic regulatory pathways via microarray data.

Chang WC, Li CW, Chen BS.

BMC Bioinformatics. 2005 Mar 7;6:44.

Items per page

Supplemental Content

Support Center