Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Upregulation of DLX5 promotes ovarian cancer cell proliferation by enhancing IRS-2-AKT signaling.

Tan Y, Cheung M, Pei J, Menges CW, Godwin AK, Testa JR.

Cancer Res. 2010 Nov 15;70(22):9197-206. doi: 10.1158/0008-5472.CAN-10-1568. Epub 2010 Nov 2.

2.

DLX5 (distal-less homeobox 5) promotes tumor cell proliferation by transcriptionally regulating MYC.

Xu J, Testa JR.

J Biol Chem. 2009 Jul 31;284(31):20593-601. doi: 10.1074/jbc.M109.021477. Epub 2009 Jun 4.

3.

A novel recurrent chromosomal inversion implicates the homeobox gene Dlx5 in T-cell lymphomas from Lck-Akt2 transgenic mice.

Tan Y, Timakhov RA, Rao M, Altomare DA, Xu J, Liu Z, Gao Q, Jhanwar SC, Di Cristofano A, Wiest DL, Knepper JE, Testa JR.

Cancer Res. 2008 Mar 1;68(5):1296-302. doi: 10.1158/0008-5472.CAN-07-3218.

4.

IGF-1R, a target of let-7b, mediates crosstalk between IRS-2/Akt and MAPK pathways to promote proliferation of oral squamous cell carcinoma.

Gao L, Wang X, Wang X, Zhang L, Qiang C, Chang S, Ren W, Li S, Yang Y, Tong D, Chen C, Li Z, Song T, Zhi K, Huang C.

Oncotarget. 2014 May 15;5(9):2562-74.

5.

Specific inhibition of AKT2 by RNA interference results in reduction of ovarian cancer cell proliferation: increased expression of AKT in advanced ovarian cancer.

Noske A, Kaszubiak A, Weichert W, Sers C, Niesporek S, Koch I, Schaefer B, Sehouli J, Dietel M, Lage H, Denkert C.

Cancer Lett. 2007 Feb 8;246(1-2):190-200. Epub 2006 Apr 3.

PMID:
16584837
6.

Co-targeting of Akt and Myc inhibits viability of lymphoma cells from Lck-Dlx5 mice.

Tan Y, Sementino E, Pei J, Kadariya Y, Ito TK, Testa JR.

Cancer Biol Ther. 2015;16(4):580-8. doi: 10.1080/15384047.2015.1018495. Epub 2015 Mar 20.

7.

Opposite regulation by PI3K/Akt and MAPK/ERK pathways of tissue factor expression, cell-associated procoagulant activity and invasiveness in MDA-MB-231 cells.

Hu C, Huang L, Gest C, Xi X, Janin A, Soria C, Li H, Lu H.

J Hematol Oncol. 2012 Jul 11;5:16. doi: 10.1186/1756-8722-5-16.

8.

MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3.

Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W, Li X.

Oncotarget. 2015 Dec 1;6(38):40799-814. doi: 10.18632/oncotarget.5695.

9.

Increased expression of PITX2 transcription factor contributes to ovarian cancer progression.

Fung FK, Chan DW, Liu VW, Leung TH, Cheung AN, Ngan HY.

PLoS One. 2012;7(5):e37076. doi: 10.1371/journal.pone.0037076. Epub 2012 May 15.

10.

WAP four-disulfide core domain protein 2 mediates the proliferation of human ovarian cancer cells through the regulation of growth- and apoptosis-associated genes.

Chen Y, Mu X, Wang S, Zhao L, Wu Y, Li J, Li M.

Oncol Rep. 2013 Jan;29(1):288-96. doi: 10.3892/or.2012.2114. Epub 2012 Oct 31.

PMID:
23129262
11.

Mutually exclusive expression of DLX2 and DLX5/6 is associated with the metastatic potential of the human breast cancer cell line MDA-MB-231.

Morini M, Astigiano S, Gitton Y, Emionite L, Mirisola V, Levi G, Barbieri O.

BMC Cancer. 2010 Nov 25;10:649. doi: 10.1186/1471-2407-10-649.

12.

c-Met inhibitors attenuate tumor growth of small cell hypercalcemic ovarian carcinoma (SCCOHT) populations.

Otte A, Rauprich F, von der Ohe J, Yang Y, Kommoss F, Feuerhake F, Hillemanns P, Hass R.

Oncotarget. 2015 Oct 13;6(31):31640-58. doi: 10.18632/oncotarget.5151.

13.

T-Type Ca2+ Channel Inhibition Sensitizes Ovarian Cancer to Carboplatin.

Dziegielewska B, Casarez EV, Yang WZ, Gray LS, Dziegielewski J, Slack-Davis JK.

Mol Cancer Ther. 2016 Mar;15(3):460-70. doi: 10.1158/1535-7163.MCT-15-0456. Epub 2016 Feb 1.

14.

Sohlh2 inhibits ovarian cancer cell proliferation by upregulation of p21 and downregulation of cyclin D1.

Zhang H, Zhang X, Ji S, Hao C, Mu Y, Sun J, Hao J.

Carcinogenesis. 2014 Aug;35(8):1863-71. doi: 10.1093/carcin/bgu113. Epub 2014 May 23.

PMID:
24858206
15.

CD164 regulates the tumorigenesis of ovarian surface epithelial cells through the SDF-1α/CXCR4 axis.

Huang AF, Chen MW, Huang SM, Kao CL, Lai HC, Chan JY.

Mol Cancer. 2013 Oct 5;12(1):115. doi: 10.1186/1476-4598-12-115.

16.

Molecular regulation of ovarian cancer cell invasion.

Sun N, Zhang Q, Xu C, Zhao Q, Ma Y, Lu X, Wang L, Li W.

Tumour Biol. 2014 Nov;35(11):11359-66. doi: 10.1007/s13277-014-2434-7. Epub 2014 Aug 15.

PMID:
25119590
17.

A mechanistic study on the anti-cancer activity of ethyl caffeate in human ovarian cancer SKOV-3 cells.

Lee HN, Kim JK, Kim JH, Lee SJ, Ahn EK, Oh JS, Seo DW.

Chem Biol Interact. 2014 Aug 5;219:151-8. doi: 10.1016/j.cbi.2014.05.017. Epub 2014 Jun 2.

PMID:
24892518
18.

Therapeutic targeting of PELP1 prevents ovarian cancer growth and metastasis.

Chakravarty D, Roy SS, Babu CR, Dandamudi R, Curiel TJ, Vivas-Mejia P, Lopez-Berestein G, Sood AK, Vadlamudi RK.

Clin Cancer Res. 2011 Apr 15;17(8):2250-9. doi: 10.1158/1078-0432.CCR-10-2718. Epub 2011 Mar 18. Erratum in: Clin Cancer Res. 2013 Mar 1;19(5):1305.

19.

Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway.

Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH.

Cell Signal. 2006 Dec;18(12):2262-71. Epub 2006 Jun 2.

PMID:
16839745
20.

PRL-3 suppresses c-Fos and integrin α2 expression in ovarian cancer cells.

Liu H, Al-aidaroos AQ, Wang H, Guo K, Li J, Zhang HF, Zeng Q.

BMC Cancer. 2013 Feb 18;13:80. doi: 10.1186/1471-2407-13-80.

Supplemental Content

Support Center