Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor.

Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT.

Bioresour Technol. 2011 Feb;102(3):2623-8. doi: 10.1016/j.biortech.2010.10.033. Epub 2010 Oct 12.

PMID:
21036604
2.

Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.

TerAvest MA, Rosenbaum MA, Kotloski NJ, Gralnick JA, Angenent LT.

Biotechnol Bioeng. 2014 Apr;111(4):692-9. doi: 10.1002/bit.25128.

PMID:
24122485
3.

Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis.

Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR.

Biotechnol Bioeng. 2009 Jun 15;103(3):524-31. doi: 10.1002/bit.22266.

PMID:
19189395
4.

The influence of acidity on microbial fuel cells containing Shewanella oneidensis.

Biffinger JC, Pietron J, Bretschger O, Nadeau LJ, Johnson GR, Williams CC, Nealson KH, Ringeisen BR.

Biosens Bioelectron. 2008 Dec 1;24(4):906-11. doi: 10.1016/j.bios.2008.07.034. Epub 2008 Jul 30.

PMID:
18774288
5.

Electrode potential regulates cytochrome accumulation on Shewanella oneidensis cell surface and the consequence to bioelectrocatalytic current generation.

Peng L, You SJ, Wang JY.

Biosens Bioelectron. 2010 Jul 15;25(11):2530-3. doi: 10.1016/j.bios.2010.03.039. Epub 2010 Apr 7.

PMID:
20427175
6.

Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment.

Tront JM, Fortner JD, Plötze M, Hughes JB, Puzrin AM.

Biotechnol Lett. 2008 Aug;30(8):1385-90. doi: 10.1007/s10529-008-9707-4. Epub 2008 Apr 15.

PMID:
18414805
7.

Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.

Rosenbaum M, Cotta MA, Angenent LT.

Biotechnol Bioeng. 2010 Apr 1;105(5):880-8. doi: 10.1002/bit.22621.

PMID:
19998276
8.

The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1-a mechanistic study.

Kirchhofer ND, Chen X, Marsili E, Sumner JJ, Dahlquist FW, Bazan GC.

Phys Chem Chem Phys. 2014 Oct 14;16(38):20436-43. doi: 10.1039/c4cp03197k. Epub 2014 Aug 29.

PMID:
25171764
9.

Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes.

Grobbler C, Virdis B, Nouwens A, Harnisch F, Rabaey K, Bond PL.

Syst Appl Microbiol. 2015 Mar;38(2):135-9. doi: 10.1016/j.syapm.2014.11.007. Epub 2014 Nov 29.

PMID:
25523930
10.

The utility of Shewanella japonica for microbial fuel cells.

Biffinger JC, Fitzgerald LA, Ray R, Little BJ, Lizewski SE, Petersen ER, Ringeisen BR, Sanders WC, Sheehan PE, Pietron JJ, Baldwin JW, Nadeau LJ, Johnson GR, Ribbens M, Finkel SE, Nealson KH.

Bioresour Technol. 2011 Jan;102(1):290-7. doi: 10.1016/j.biortech.2010.06.078.

PMID:
20663660
11.

Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis.

Peng L, You SJ, Wang JY.

Biosens Bioelectron. 2010 Jan 15;25(5):1248-51. doi: 10.1016/j.bios.2009.10.002. Epub 2009 Oct 12.

PMID:
19897352
12.

Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis.

Nimje VR, Chen CY, Chen HR, Chen CC, Huang YM, Tseng MJ, Cheng KC, Chang YF.

Bioresour Technol. 2012 Jan;104:315-23. doi: 10.1016/j.biortech.2011.09.129. Epub 2011 Oct 29.

PMID:
22123299
13.

Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.

Nakagawa G, Kouzuma A, Hirose A, Kasai T, Yoshida G, Watanabe K.

PLoS One. 2015 Sep 22;10(9):e0138813. doi: 10.1371/journal.pone.0138813. eCollection 2015.

14.

Intermittent energy harvesting improves the performance of microbial fuel cells.

Dewan A, Beyenal H, Lewandowski Z.

Environ Sci Technol. 2009 Jun 15;43(12):4600-5.

PMID:
19603683
15.

Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.

Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR.

Biosens Bioelectron. 2008 Jan 18;23(6):820-6. Epub 2007 Sep 6.

PMID:
17931851
16.

Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride.

Fitzgerald LA, Petersen ER, Gross BJ, Soto CM, Ringeisen BR, El-Naggar MY, Biffinger JC.

Biosens Bioelectron. 2012 Jan 15;31(1):492-8. doi: 10.1016/j.bios.2011.11.024. Epub 2011 Nov 22.

PMID:
22154401
17.

Hydrogen production using single-chamber membrane-free microbial electrolysis cells.

Hu H, Fan Y, Liu H.

Water Res. 2008 Sep;42(15):4172-8. doi: 10.1016/j.watres.2008.06.015. Epub 2008 Jun 26.

PMID:
18718624
18.

Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output.

Fitzgerald LA, Petersen ER, Leary DH, Nadeau LJ, Soto CM, Ray RI, Little BJ, Ringeisen BR, Johnson GR, Vora GJ, Biffinger JC.

Biosens Bioelectron. 2013 Feb 15;40(1):102-9. doi: 10.1016/j.bios.2012.06.039. Epub 2012 Jun 29.

PMID:
22796023
19.

Spatial uniformity of microbial diversity in a continuous bioelectrochemical system.

Dennis PG, Guo K, Imelfort M, Jensen P, Tyson GW, Rabaey K.

Bioresour Technol. 2013 Feb;129:599-605. doi: 10.1016/j.biortech.2012.11.098. Epub 2012 Dec 4.

PMID:
23313735
20.

Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures.

Watson VJ, Logan BE.

Biotechnol Bioeng. 2010 Feb 15;105(3):489-98. doi: 10.1002/bit.22556.

PMID:
19787640

Supplemental Content

Support Center