Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Mechanism of inactivation of Escherichia coli aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid .

Liu D, Pozharski E, Fu M, Silverman RB, Ringe D.

Biochemistry. 2010 Dec 14;49(49):10507-15. doi: 10.1021/bi101325z.

2.

Inactivation of Escherichia coli L-aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-thiophenecarboxylic acid reveals "a tale of two mechanisms".

Liu D, Pozharski E, Lepore BW, Fu M, Silverman RB, Petsko GA, Ringe D.

Biochemistry. 2007 Sep 18;46(37):10517-27.

PMID:
17713924
5.

Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase.

Hayashi H, Inoue K, Nagata T, Kuramitsu S, Kagamiyama H.

Biochemistry. 1993 Nov 16;32(45):12229-39.

PMID:
8218300
6.

Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking the pyridoxal 5'-phosphate-binding lysine residue.

Malashkevich VN, Jäger J, Ziak M, Sauder U, Gehring H, Christen P, Jansonius JN.

Biochemistry. 1995 Jan 17;34(2):405-14.

PMID:
7819232
7.

Tyr225 in aspartate aminotransferase: contribution of the hydrogen bond between Tyr225 and coenzyme to the catalytic reaction.

Inoue K, Kuramitsu S, Okamoto A, Hirotsu K, Higuchi T, Morino Y, Kagamiyama H.

J Biochem. 1991 Apr;109(4):570-6.

8.

The role of His143 in the catalytic mechanism of Escherichia coli aspartate aminotransferase.

Yano T, Kuramitsu S, Tanase S, Morino Y, Hiromi K, Kagamiyama H.

J Biol Chem. 1991 Apr 5;266(10):6079-85.

9.
10.

Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties.

Ziak M, Jäger J, Malashkevich VN, Gehring H, Jaussi R, Jansonius JN, Christen P.

Eur J Biochem. 1993 Feb 1;211(3):475-84.

11.

Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.

Vacca RA, Christen P, Malashkevich VN, Jansonius JN, Sandmeier E.

Eur J Biochem. 1995 Jan 15;227(1-2):481-7. Erratum in: Eur J Biochem 1995 May 1;229(3):761.

12.
13.

Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.

Islam MM, Goto M, Miyahara I, Ikushiro H, Hirotsu K, Hayashi H.

Biochemistry. 2005 Jun 14;44(23):8218-29.

PMID:
15938611
14.
15.
16.

Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase.

Lo HH, Hsu SK, Lin WD, Chan NL, Hsu WH.

Biotechnol Prog. 2005 Mar-Apr;21(2):411-5.

PMID:
15801779
18.

Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold.

Fernandez FJ, de Vries D, Peña-Soler E, Coll M, Christen P, Gehring H, Vega MC.

Biochim Biophys Acta. 2012 Feb;1824(2):339-49. doi: 10.1016/j.bbapap.2011.10.016.

PMID:
22138634
19.

Site-directed mutagenesis of Escherichia coli aspartate aminotransferase: role of Tyr70 in the catalytic processes.

Inoue K, Kuramitsu S, Okamoto A, Hirotsu K, Higuchi T, Kagamiyama H.

Biochemistry. 1991 Aug 6;30(31):7796-801.

PMID:
1868057
Items per page

Supplemental Content

Support Center