Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Metabolic disorders: Fathers' nutritional legacy.

Skinner MK.

Nature. 2010 Oct 21;467(7318):922-3. doi: 10.1038/467922a. No abstract available.

2.

Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring.

Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ.

Nature. 2010 Oct 21;467(7318):963-6. doi: 10.1038/nature09491.

PMID:
20962845
3.

Novel canine models of obese prediabetes and mild type 2 diabetes.

Ionut V, Liu H, Mooradian V, Castro AV, Kabir M, Stefanovski D, Zheng D, Kirkman EL, Bergman RN.

Am J Physiol Endocrinol Metab. 2010 Jan;298(1):E38-48. doi: 10.1152/ajpendo.00466.2009. Epub 2009 Oct 20.

4.

Development and characterization of a novel rat model of type 2 diabetes mellitus: the UC Davis type 2 diabetes mellitus UCD-T2DM rat.

Cummings BP, Digitale EK, Stanhope KL, Graham JL, Baskin DG, Reed BJ, Sweet IR, Griffen SC, Havel PJ.

Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R1782-93. doi: 10.1152/ajpregu.90635.2008. Epub 2008 Oct 1.

5.

Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood.

Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS.

Am J Physiol Endocrinol Metab. 2006 Oct;291(4):E792-9. Epub 2006 May 23.

PMID:
16720630
6.

Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

Mao Z, Xia W, Chang H, Huo W, Li Y, Xu S.

Toxicol Lett. 2015 Nov 4;238(3):30-8. doi: 10.1016/j.toxlet.2015.08.009. Epub 2015 Aug 11.

PMID:
26276081
7.

Inhibition of Id1 augments insulin secretion and protects against high-fat diet-induced glucose intolerance.

Akerfeldt MC, Laybutt DR.

Diabetes. 2011 Oct;60(10):2506-14. doi: 10.2337/db11-0083. Epub 2011 Sep 22.

8.

12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet.

Nunemaker CS, Chen M, Pei H, Kimble SD, Keller SR, Carter JD, Yang Z, Smith KM, Wu R, Bevard MH, Garmey JC, Nadler JL.

Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1065-75. doi: 10.1152/ajpendo.90371.2008. Epub 2008 Sep 9.

9.

The β-cell burden index of food: A proposal.

Scazzina F, Dei Cas A, Del Rio D, Brighenti F, Bonadonna RC.

Nutr Metab Cardiovasc Dis. 2016 Oct;26(10):872-8. doi: 10.1016/j.numecd.2016.04.015. Epub 2016 May 6. Review.

PMID:
27381989
10.

Haploid insufficiency of suppressor enhancer Lin12 1-like (SEL1L) protein predisposes mice to high fat diet-induced hyperglycemia.

Francisco AB, Singh R, Sha H, Yan X, Qi L, Lei X, Long Q.

J Biol Chem. 2011 Jun 24;286(25):22275-82. doi: 10.1074/jbc.M111.239418. Epub 2011 May 2.

11.

A euglycaemic/non-diabetic perinatal environment does not alleviate early beta cell maldevelopment and type 2 diabetes risk in the GK/Par rat model.

Chavey A, Bailbé D, Maulny L, Renard JP, Movassat J, Portha B.

Diabetologia. 2013 Jan;56(1):194-203. doi: 10.1007/s00125-012-2733-8. Epub 2012 Oct 12.

PMID:
23064288
12.

High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat.

Akiyama T, Tachibana I, Shirohara H, Watanabe N, Otsuki M.

Diabetes Res Clin Pract. 1996 Mar;31(1-3):27-35.

PMID:
8792099
13.

The development of diabetes mellitus in Wistar rats kept on a high-fat/low-carbohydrate diet for long periods.

Wang Y, Wang PY, Qin LQ, Davaasambuu G, Kaneko T, Xu J, Murata S, Katoh R, Sato A.

Endocrine. 2003 Nov;22(2):85-92.

PMID:
14665711
14.

Fetal and neonatal exposure to nicotine in Wistar rats results in increased beta cell apoptosis at birth and postnatal endocrine and metabolic changes associated with type 2 diabetes.

Holloway AC, Lim GE, Petrik JJ, Foster WG, Morrison KM, Gerstein HC.

Diabetologia. 2005 Dec;48(12):2661-6. Epub 2005 Nov 4.

PMID:
16270195
15.

Diabetes-induced perturbations are subject to intergenerational transmission through maternal line.

Hanafi MY, Abdelkhalek TM, Saad MI, Saleh MM, Haiba MM, Kamel MA.

J Physiol Biochem. 2016 Jun;72(2):315-26. doi: 10.1007/s13105-016-0483-7. Epub 2016 Apr 2.

PMID:
27038466
16.

Goals of treatment for type 2 diabetes: beta-cell preservation for glycemic control.

Marchetti P, Lupi R, Del Guerra S, Bugliani M, D'Aleo V, Occhipinti M, Boggi U, Marselli L, Masini M.

Diabetes Care. 2009 Nov;32 Suppl 2:S178-83. doi: 10.2337/dc09-S306. Review. No abstract available.

17.

Dipeptidyl peptidase-4 inhibitor anagliptin ameliorates diabetes in mice with haploinsufficiency of glucokinase on a high-fat diet.

Nakaya K, Kubota N, Takamoto I, Kubota T, Katsuyama H, Sato H, Tokuyama K, Hashimoto S, Goto M, Jomori T, Ueki K, Kadowaki T.

Metabolism. 2013 Jul;62(7):939-51. doi: 10.1016/j.metabol.2013.01.010. Epub 2013 Feb 8.

PMID:
23790528
18.

GRP78 overproduction in pancreatic beta cells protects against high-fat-diet-induced diabetes in mice.

Teodoro-Morrison T, Schuiki I, Zhang L, Belsham DD, Volchuk A.

Diabetologia. 2013 May;56(5):1057-67. doi: 10.1007/s00125-013-2855-7. Epub 2013 Mar 9.

PMID:
23475366
19.

Characterization of diabetes-related traits in MSM and JF1 mice on high-fat diet.

Kobayashi M, Ohno T, Tsuchiya T, Horio F.

J Nutr Biochem. 2004 Oct;15(10):614-21.

PMID:
15542353
20.

High-fat, carbohydrate-free diet markedly aggravates obesity but prevents beta-cell loss and diabetes in the obese, diabetes-susceptible db/db strain.

Mirhashemi F, Kluth O, Scherneck S, Vogel H, Kluge R, Schurmann A, Joost HG, Neschen S.

Obes Facts. 2008;1(6):292-7. doi: 10.1159/000176064. Epub 2008 Dec 2.

Supplemental Content

Support Center