Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer.

Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL.

Int J Nanomedicine. 2010 Aug 9;5:445-54.

2.

Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using Protein G as a cofactor.

Sun X, Zhang G, Patel D, Stephens D, Gobin AM.

Ann Biomed Eng. 2012 Oct;40(10):2131-9. doi: 10.1007/s10439-012-0575-7. Epub 2012 Apr 25.

PMID:
22532323
3.

Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells.

Rengan AK, Jagtap M, De A, Banerjee R, Srivastava R.

Nanoscale. 2014 Jan 21;6(2):916-23. doi: 10.1039/c3nr04448c.

PMID:
24281647
4.

Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines.

El-Hussein A, Mfouo-Tynga I, Abdel-Harith M, Abrahamse H.

J Photochem Photobiol B. 2015 Dec;153:67-75. doi: 10.1016/j.jphotobiol.2015.08.028. Epub 2015 Sep 2.

PMID:
26398813
5.

Effect of Size-Dependent Photodestructive Efficacy by Gold Nanomaterials with Multiphoton Laser.

Chang WT, Chen SJ, Chang CY, Liu YH, Chen CH, Yang CH, Chou LC, Chang JC, Cheng LC, Kuo WS, Wang JY.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17318-29. doi: 10.1021/acsami.5b04431. Epub 2015 Aug 3.

PMID:
26172073
6.

Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent.

Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL.

Small. 2010 Mar 22;6(6):745-52. doi: 10.1002/smll.200901557.

7.

Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.

Patino T, Mahajan U, Palankar R, Medvedev N, Walowski J, M├╝nzenberg M, Mayerle J, Delcea M.

Nanoscale. 2015 Mar 12;7(12):5328-37. doi: 10.1039/c5nr00114e.

PMID:
25721177
8.

In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles.

Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM, Tang SH.

Cancer Lett. 2009 Feb 18;274(2):319-26. doi: 10.1016/j.canlet.2008.09.024. Epub 2008 Nov 1.

PMID:
18977071
9.

Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer.

Wang S, Dai Z, Ke H, Qu E, Qi X, Zhang K, Wang J.

Eur J Radiol. 2014 Jan;83(1):117-22. doi: 10.1016/j.ejrad.2013.09.010. Epub 2013 Sep 21.

PMID:
24268740
10.

Infrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma.

Li Y, Gobin AM, Dryden GW, Kang X, Xiao D, Li SP, Zhang G, Martin RC.

Int J Nanomedicine. 2013;8:2153-61. doi: 10.2147/IJN.S37140. Epub 2013 Jun 18.

11.

Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer.

Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D.

ACS Appl Mater Interfaces. 2014 Jun 11;6(11):8080-9. doi: 10.1021/am500302t. Epub 2014 May 20.

PMID:
24842534
12.

Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy.

Zharov VP, Galitovskaya EN, Johnson C, Kelly T.

Lasers Surg Med. 2005 Sep;37(3):219-26. Erratum in: Lasers Surg Med. 2005 Oct;37(4):329.

PMID:
16175635
13.

Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.

Van de Broek B, Devoogdt N, D'Hollander A, Gijs HL, Jans K, Lagae L, Muyldermans S, Maes G, Borghs G.

ACS Nano. 2011 Jun 28;5(6):4319-28. doi: 10.1021/nn1023363. Epub 2011 Jun 10.

PMID:
21609027
14.

The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells.

Marches R, Mikoryak C, Wang RH, Pantano P, Draper RK, Vitetta ES.

Nanotechnology. 2011 Mar 4;22(9):095101. doi: 10.1088/0957-4484/22/9/095101. Epub 2011 Jan 24.

PMID:
21258147
15.

The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy.

Huang X, Qian W, El-Sayed IH, El-Sayed MA.

Lasers Surg Med. 2007 Oct;39(9):747-53.

PMID:
17960762
16.

Excitation-Selectable Nanoprobe for Tumor Fluorescence Imaging and Near-Infrared Thermal Therapy.

Wei Y, Chen Q, Wu B, Xing D.

J Biomed Nanotechnol. 2016 Jan;12(1):91-102.

PMID:
27301175
17.

Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1064 nm in 4T1 breast cancer model.

Zhou M, Ku G, Pageon L, Li C.

Nanoscale. 2014 Dec 21;6(24):15228-35. doi: 10.1039/c4nr05386a. Epub 2014 Nov 7.

18.

Enhanced drug delivery via hyperthermal membrane disruption using targeted gold nanoparticles with PEGylated Protein-G as a cofactor.

Sun X, Zhang G, Keynton RS, O'Toole MG, Patel D, Gobin AM.

Nanomedicine. 2013 Nov;9(8):1214-22. doi: 10.1016/j.nano.2013.04.002. Epub 2013 Apr 17.

PMID:
23603356
19.

Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods.

Fernandez Cabada T, Sanchez Lopez de Pablo C, Martinez Serrano A, del Pozo Guerrero F, Serrano Olmedo JJ, Ramos Gomez M.

Int J Nanomedicine. 2012;7:1511-23. doi: 10.2147/IJN.S28470. Epub 2012 Mar 21.

20.

Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination.

Yang L, Tseng YT, Suo G, Chen L, Yu J, Chiu WJ, Huang CC, Lin CH.

ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5097-106. doi: 10.1021/am508117e. Epub 2015 Feb 27.

PMID:
25705789

Supplemental Content

Support Center