Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Origin of new glial cells in intact and injured adult spinal cord.

Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J.

Cell Stem Cell. 2010 Oct 8;7(4):470-82. doi: 10.1016/j.stem.2010.07.014.

2.

The fate of proliferating cells in the injured adult spinal cord.

McTigue DM, Sahinkaya FR.

Stem Cell Res Ther. 2011 Feb 14;2(1):7. doi: 10.1186/scrt48.

3.

Fate of endogenous stem/progenitor cells following spinal cord injury.

Horky LL, Galimi F, Gage FH, Horner PJ.

J Comp Neurol. 2006 Oct 1;498(4):525-38.

4.

Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.

Hui SP, Nag TC, Ghosh S.

PLoS One. 2015 Dec 2;10(12):e0143595. doi: 10.1371/journal.pone.0143595. eCollection 2015 Dec 2.

5.

Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.

Hamilton LK, Truong MK, Bednarczyk MR, Aumont A, Fernandes KJ.

Neuroscience. 2009 Dec 15;164(3):1044-56. doi: 10.1016/j.neuroscience.2009.09.006. Epub 2009 Sep 9.

PMID:
19747531
7.

Spinal cord injury reveals multilineage differentiation of ependymal cells.

Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N, Shupliakov O, Frisén J.

PLoS Biol. 2008 Jul 22;6(7):e182. doi: 10.1371/journal.pbio.0060182.

8.

Neural stem cells in the adult spinal cord.

Sabelström H, Stenudd M, Frisén J.

Exp Neurol. 2014 Oct;260:44-9. doi: 10.1016/j.expneurol.2013.01.026. Epub 2013 Jan 30. Review.

PMID:
23376590
9.

Akhirin regulates the proliferation and differentiation of neural stem cells in intact and injured mouse spinal cord.

Abdulhaleem FA, Song X, Kawano R, Uezono N, Ito A, Ahmed G, Hossain M, Nakashima K, Tanaka H, Ohta K.

Dev Neurobiol. 2015 May;75(5):494-504. doi: 10.1002/dneu.22238. Epub 2014 Oct 30.

11.

Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

Davies SJ, Shih CH, Noble M, Mayer-Proschel M, Davies JE, Proschel C.

PLoS One. 2011 Mar 2;6(3):e17328. doi: 10.1371/journal.pone.0017328.

12.

The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.

Fiorelli R, Cebrian-Silla A, Garcia-Verdugo JM, Raineteau O.

Glia. 2013 Dec;61(12):2100-13. doi: 10.1002/glia.22579. Epub 2013 Oct 7.

PMID:
24123239
14.

Cell proliferation and replacement following contusive spinal cord injury.

Zai LJ, Wrathall JR.

Glia. 2005 May;50(3):247-57.

PMID:
15739189
15.

Traumatic injury-induced BMP7 expression in the adult rat spinal cord.

Setoguchi T, Yone K, Matsuoka E, Takenouchi H, Nakashima K, Sakou T, Komiya S, Izumo S.

Brain Res. 2001 Dec 7;921(1-2):219-25.

PMID:
11720729
17.

Increase in bFGF-responsive neural progenitor population following contusion injury of the adult rodent spinal cord.

Xu Y, Kitada M, Yamaguchi M, Dezawa M, Ide C.

Neurosci Lett. 2006 Apr 24;397(3):174-9. Epub 2006 Jan 9.

PMID:
16406666
18.

Ependymal cell reactions in spinal cord segments after compression injury in adult rat.

Takahashi M, Arai Y, Kurosawa H, Sueyoshi N, Shirai S.

J Neuropathol Exp Neurol. 2003 Feb;62(2):185-94.

PMID:
12578228
19.

Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.

Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC, Zhang XF.

Med Hypotheses. 2007;69(6):1234-7. Epub 2007 Jun 4.

PMID:
17548168

Supplemental Content

Support Center