Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 289

1.

Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y.

PLoS Pathog. 2010 Sep 23;6(9):e1001121. doi: 10.1371/journal.ppat.1001121.

2.

Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA.

PLoS Pathog. 2010 Sep 16;6(9):e1001110. doi: 10.1371/journal.ppat.1001110.

3.

Ebola virus uses clathrin-mediated endocytosis as an entry pathway.

Bhattacharyya S, Warfield KL, Ruthel G, Bavari S, Aman MJ, Hope TJ.

Virology. 2010 May 25;401(1):18-28. doi: 10.1016/j.virol.2010.02.015. Epub 2010 Mar 3.

4.

Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis.

Aleksandrowicz P, Marzi A, Biedenkopf N, Beimforde N, Becker S, Hoenen T, Feldmann H, Schnittler HJ.

J Infect Dis. 2011 Nov;204 Suppl 3:S957-67. doi: 10.1093/infdis/jir326.

5.

The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus.

Hunt CL, Kolokoltsov AA, Davey RA, Maury W.

J Virol. 2011 Jan;85(1):334-47. doi: 10.1128/JVI.01278-09. Epub 2010 Nov 3.

6.

The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway.

Mulherkar N, Raaben M, de la Torre JC, Whelan SP, Chandran K.

Virology. 2011 Oct 25;419(2):72-83. doi: 10.1016/j.virol.2011.08.009. Epub 2011 Sep 9.

7.

Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles.

Nanbo A, Maruyama J, Imai M, Ujie M, Fujioka Y, Nishide S, Takada A, Ohba Y, Kawaoka Y.

PLoS Pathog. 2018 Jan 16;14(1):e1006848. doi: 10.1371/journal.ppat.1006848. eCollection 2018 Jan.

8.

Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors.

Quinn K, Brindley MA, Weller ML, Kaludov N, Kondratowicz A, Hunt CL, Sinn PL, McCray PB Jr, Stein CS, Davidson BL, Flick R, Mandell R, Staplin W, Maury W, Chiorini JA.

J Virol. 2009 Oct;83(19):10176-86. doi: 10.1128/JVI.00422-09. Epub 2009 Jul 22.

9.

Cathepsin B & L are not required for ebola virus replication.

Marzi A, Reinheckel T, Feldmann H.

PLoS Negl Trop Dis. 2012;6(12):e1923. doi: 10.1371/journal.pntd.0001923. Epub 2012 Dec 6.

10.

Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

Dolnik O, Volchkova VA, Escudero-Perez B, Lawrence P, Klenk HD, Volchkov VE.

J Infect Dis. 2015 Oct 1;212 Suppl 2:S322-8. doi: 10.1093/infdis/jiv268. Epub 2015 Jun 19.

PMID:
26092855
11.

Rab5 and Rab11 Are Required for Clathrin-Dependent Endocytosis of Japanese Encephalitis Virus in BHK-21 Cells.

Liu CC, Zhang YN, Li ZY, Hou JX, Zhou J, Kan L, Zhou B, Chen PY.

J Virol. 2017 Sep 12;91(19). pii: e01113-17. doi: 10.1128/JVI.01113-17. Print 2017 Oct 1.

12.

Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.

Mingo RM, Simmons JA, Shoemaker CJ, Nelson EA, Schornberg KL, D'Souza RS, Casanova JE, White JM.

J Virol. 2015 Mar;89(5):2931-43. doi: 10.1128/JVI.03398-14. Epub 2014 Dec 31.

13.

A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry.

Hoffmann M, Crone L, Dietzel E, Paijo J, González-Hernández M, Nehlmeier I, Kalinke U, Becker S, Pöhlmann S.

J Virol. 2017 Apr 13;91(9). pii: e00177-17. doi: 10.1128/JVI.00177-17. Print 2017 May 1.

14.

A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type-specific manner.

Martinez O, Ndungo E, Tantral L, Miller EH, Leung LW, Chandran K, Basler CF.

J Virol. 2013 Mar;87(6):3324-34. doi: 10.1128/JVI.01598-12. Epub 2013 Jan 9.

15.

Rab5, Rab7, and Rab11 Are Required for Caveola-Dependent Endocytosis of Classical Swine Fever Virus in Porcine Alveolar Macrophages.

Zhang YN, Liu YY, Xiao FC, Liu CC, Liang XD, Chen J, Zhou J, Baloch AS, Kan L, Zhou B, Qiu HJ.

J Virol. 2018 Jul 17;92(15). pii: e00797-18. doi: 10.1128/JVI.00797-18. Print 2018 Aug 1.

PMID:
29769350
16.

Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin.

Usami K, Matsuno K, Igarashi M, Denda-Nagai K, Takada A, Irimura T.

Biochem Biophys Res Commun. 2011 Apr 1;407(1):74-8. doi: 10.1016/j.bbrc.2011.02.110. Epub 2011 Mar 6.

PMID:
21362405
17.

Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein.

Brindley MA, Hunt CL, Kondratowicz AS, Bowman J, Sinn PL, McCray PB Jr, Quinn K, Weller ML, Chiorini JA, Maury W.

Virology. 2011 Jul 5;415(2):83-94. doi: 10.1016/j.virol.2011.04.002. Epub 2011 May 6.

18.

Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus.

Saeed MF, Kolokoltsov AA, Freiberg AN, Holbrook MR, Davey RA.

PLoS Pathog. 2008 Aug 29;4(8):e1000141. doi: 10.1371/journal.ppat.1000141.

19.

Entry of Ebola Virus is an Asynchronous Process.

Reynard O, Volchkov VE.

J Infect Dis. 2015 Oct 1;212 Suppl 2:S199-203. doi: 10.1093/infdis/jiv189. Epub 2015 May 3.

PMID:
25941332
20.

Growth-Adaptive Mutations in the Ebola Virus Makona Glycoprotein Alter Different Steps in the Virus Entry Pathway.

Ruedas JB, Arnold CE, Palacios G, Connor JH.

J Virol. 2018 Sep 12;92(19). pii: e00820-18. doi: 10.1128/JVI.00820-18. Print 2018 Oct 1.

PMID:
30021890

Supplemental Content

Support Center