Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2.

Szollosi A, Vergani P, Csanády L.

J Gen Physiol. 2010 Oct;136(4):407-23. doi: 10.1085/jgp.201010434.

2.

Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.

Csanády L, Nairn AC, Gadsby DC.

J Gen Physiol. 2006 Nov;128(5):523-33. Epub 2006 Oct 16.

3.
4.

Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating.

Szollosi A, Muallem DR, Csanády L, Vergani P.

J Gen Physiol. 2011 Jun;137(6):549-62. doi: 10.1085/jgp.201110608. Epub 2011 May 16.

5.
6.

Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.

Csanády L, Mihályi C, Szollosi A, Töröcsik B, Vergani P.

J Gen Physiol. 2013 Jul;142(1):61-73. doi: 10.1085/jgp.201210954. Epub 2013 Jun 10.

7.

The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.

Zhou Z, Wang X, Liu HY, Zou X, Li M, Hwang TC.

J Gen Physiol. 2006 Oct;128(4):413-22. Epub 2006 Sep 11.

8.

An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening.

Wang W, Roessler BC, Kirk KL.

J Biol Chem. 2014 Oct 31;289(44):30364-78. doi: 10.1074/jbc.M114.595710. Epub 2014 Sep 4.

9.

Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.

Tsai MF, Li M, Hwang TC.

J Gen Physiol. 2010 May;135(5):399-414. doi: 10.1085/jgp.201010399.

10.

Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations.

Csanády L, Vergani P, Gadsby DC.

Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1241-6. doi: 10.1073/pnas.0911061107. Epub 2009 Dec 4.

11.

CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.

Vergani P, Lockless SW, Nairn AC, Gadsby DC.

Nature. 2005 Feb 24;433(7028):876-80.

12.

On the mechanism of MgATP-dependent gating of CFTR Cl- channels.

Vergani P, Nairn AC, Gadsby DC.

J Gen Physiol. 2003 Jan;121(1):17-36.

13.

The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.

Jih KY, Li M, Hwang TC, Bompadre SG.

J Physiol. 2011 Jun 1;589(Pt 11):2719-31. doi: 10.1113/jphysiol.2010.202861. Epub 2011 Apr 11.

14.

Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.

Csanády L, Chan KW, Nairn AC, Gadsby DC.

J Gen Physiol. 2005 Jan;125(1):43-55. Epub 2004 Dec 13.

15.

ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.

Wang W, Wu J, Bernard K, Li G, Wang G, Bevensee MO, Kirk KL.

Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3888-93. doi: 10.1073/pnas.0913001107. Epub 2010 Feb 3.

17.

Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.

Jih KY, Sohma Y, Hwang TC.

J Gen Physiol. 2012 Oct;140(4):347-59. Epub 2012 Sep 10.

19.

Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

Wei S, Roessler BC, Chauvet S, Guo J, Hartman JL 4th, Kirk KL.

J Biol Chem. 2014 Jul 18;289(29):19942-57. doi: 10.1074/jbc.M114.562116. Epub 2014 May 29.

20.

Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains.

Csanády L, Chan KW, Seto-Young D, Kopsco DC, Nairn AC, Gadsby DC.

J Gen Physiol. 2000 Sep;116(3):477-500.

Supplemental Content

Support Center