Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75


The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II.

Forget D, Lacombe AA, Cloutier P, Al-Khoury R, Bouchard A, Lavallée-Adam M, Faubert D, Jeronimo C, Blanchette M, Coulombe B.

Mol Cell Proteomics. 2010 Dec;9(12):2827-39. doi: 10.1074/mcp.M110.003616. Epub 2010 Sep 20.


Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2.

Forget D, Lacombe AA, Cloutier P, Lavallée-Adam M, Blanchette M, Coulombe B.

Nucleic Acids Res. 2013 Aug;41(14):6881-91. doi: 10.1093/nar/gkt455. Epub 2013 May 30.


Human GTPases associate with RNA polymerase II to mediate its nuclear import.

Carré C, Shiekhattar R.

Mol Cell Biol. 2011 Oct;31(19):3953-62. doi: 10.1128/MCB.05442-11. Epub 2011 Jul 18.


A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear targeting of RNA polymerase II, is necessary and sufficient for nuclear export.

Reyes-Pardo H, Barbosa-Camacho AA, Pérez-Mejía AE, Lara-Chacón B, Salas-Estrada LA, Robledo-Rivera AY, Montero-Morán GM, Lara-González S, Calera MR, Sánchez-Olea R.

Biochim Biophys Acta. 2012 Oct;1823(10):1756-66. doi: 10.1016/j.bbamcr.2012.07.001. Epub 2012 Jul 14.


GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein.

Staresincic L, Walker J, Dirac-Svejstrup AB, Mitter R, Svejstrup JQ.

J Biol Chem. 2011 Oct 14;286(41):35553-61. doi: 10.1074/jbc.M111.286161. Epub 2011 Aug 15.


Biogenesis of RNA polymerases II and III requires the conserved GPN small GTPases in Saccharomyces cerevisiae.

Minaker SW, Filiatrault MC, Ben-Aroya S, Hieter P, Stirling PC.

Genetics. 2013 Mar;193(3):853-64. doi: 10.1534/genetics.112.148726. Epub 2012 Dec 24.


Npa3/ScGpn1 carboxy-terminal tail is dispensable for cell viability and RNA polymerase II nuclear targeting but critical for microtubule stability and function.

Guerrero-Serrano G, Castanedo L, Cristóbal-Mondragón GR, Montalvo-Arredondo J, Riego-Ruíz L, DeLuna A, De Las Peñas A, Castaño I, Calera MR, Sánchez-Olea R.

Biochim Biophys Acta. 2017 Mar;1864(3):451-462. doi: 10.1016/j.bbamcr.2016.12.010. Epub 2016 Dec 10.


High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes.

Cloutier P, Al-Khoury R, Lavallée-Adam M, Faubert D, Jiang H, Poitras C, Bouchard A, Forget D, Blanchette M, Coulombe B.

Methods. 2009 Aug;48(4):381-6. doi: 10.1016/j.ymeth.2009.05.005. Epub 2009 May 18.


Discovery of cell compartment specific protein-protein interactions using affinity purification combined with tandem mass spectrometry.

Lavallée-Adam M, Rousseau J, Domecq C, Bouchard A, Forget D, Faubert D, Blanchette M, Coulombe B.

J Proteome Res. 2013 Jan 4;12(1):272-81. doi: 10.1021/pr300778b. Epub 2012 Dec 4.


Structure of GPN-Loop GTPase Npa3 and Implications for RNA Polymerase II Assembly.

Niesser J, Wagner FR, Kostrewa D, Mühlbacher W, Cramer P.

Mol Cell Biol. 2015 Dec 28;36(5):820-31. doi: 10.1128/MCB.01009-15.


The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability.

Li M, Xu X, Liu Y.

Mol Cell Biol. 2011 May;31(10):2090-9. doi: 10.1128/MCB.01137-10. Epub 2011 Mar 14.


Gpn1 and Gpn3 associate tightly and their protein levels are mutually dependent in mammalian cells.

Méndez-Hernández LE, Pérez-Mejía AE, Lara-Chacón B, Barbosa-Camacho AA, Peña-Gómez SG, Martínez-Sánchez M, Robledo-Rivera AY, Sánchez-Olea R, Calera MR.

FEBS Lett. 2014 Nov 3;588(21):3823-9. doi: 10.1016/j.febslet.2014.08.038. Epub 2014 Sep 19.


Proteomic analysis of mitotic RNA polymerase II reveals novel interactors and association with proteins dysfunctional in disease.

Möller A, Xie SQ, Hosp F, Lang B, Phatnani HP, James S, Ramirez F, Collin GB, Naggert JK, Babu MM, Greenleaf AL, Selbach M, Pombo A.

Mol Cell Proteomics. 2012 Jun;11(6):M111.011767. doi: 10.1074/mcp.M111.011767. Epub 2011 Dec 22.


RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits.

Jeronimo C, Langelier MF, Zeghouf M, Cojocaru M, Bergeron D, Baali D, Forget D, Mnaimneh S, Davierwala AP, Pootoolal J, Chandy M, Canadien V, Beattie BK, Richards DP, Workman JL, Hughes TR, Greenblatt J, Coulombe B.

Mol Cell Biol. 2004 Aug;24(16):7043-58.


A rapid purification method for human RNA polymerase II by two-step affinity chromatography.

Hasegawa J, Endou M, Narita T, Yamada T, Yamaguchi Y, Wada T, Handa H.

J Biochem. 2003 Jan;133(1):133-8.


New insights into the biogenesis of nuclear RNA polymerases?

Cloutier P, Coulombe B.

Biochem Cell Biol. 2010 Apr;88(2):211-21. doi: 10.1139/o09-173. Review.


Abnormal expression of RNA polymerase II-associated proteins in muscle of patients with myofibrillar myopathies.

Guglielmi V, Marini M, Masson ÉF, Malatesta M, Forget D, Tomelleri G, Coulombe B, Vattemi G.

Histopathology. 2015 Dec;67(6):859-65. doi: 10.1111/his.12715. Epub 2015 May 25.


In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin.

Nguyen VT, Giannoni F, Dubois MF, Seo SJ, Vigneron M, Kédinger C, Bensaude O.

Nucleic Acids Res. 1996 Aug 1;24(15):2924-9.


Parcs/Gpn3 is required for the nuclear accumulation of RNA polymerase II.

Calera MR, Zamora-Ramos C, Araiza-Villanueva MG, Moreno-Aguilar CA, Peña-Gómez SG, Castellanos-Terán F, Robledo-Rivera AY, Sánchez-Olea R.

Biochim Biophys Acta. 2011 Oct;1813(10):1708-16. doi: 10.1016/j.bbamcr.2011.07.005. Epub 2011 Jul 18.


Nuclear myosin VI enhances RNA polymerase II-dependent transcription.

Vreugde S, Ferrai C, Miluzio A, Hauben E, Marchisio PC, Crippa MP, Bussi M, Biffo S.

Mol Cell. 2006 Sep 1;23(5):749-55.

Supplemental Content

Support Center