Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Cross-talk between protein kinase A and the MAPK-activated protein kinases RSK1 and MK5.

Kostenko S, Shiryaev A, Dumitriu G, Gerits N, Moens U.

J Recept Signal Transduct Res. 2011 Feb;31(1):1-9. doi: 10.3109/10799893.2010.515593. Epub 2010 Sep 18. Review.

PMID:
20849292
2.

Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases.

Moens U, Kostenko S.

Biol Chem. 2013 Sep;394(9):1115-32. doi: 10.1515/hsz-2013-0149. Review.

PMID:
23729623
3.

Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: ménage à trois or ménage à quatre?

Shiryaev A, Moens U.

Cell Signal. 2010 Aug;22(8):1185-92. doi: 10.1016/j.cellsig.2010.03.002. Epub 2010 Mar 11. Review.

PMID:
20227494
4.
5.

Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility.

Gerits N, Kostenko S, Shiryaev A, Johannessen M, Moens U.

Cell Signal. 2008 Sep;20(9):1592-607. doi: 10.1016/j.cellsig.2008.02.022. Epub 2008 Mar 14. Review.

PMID:
18423978
6.

Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.

Cargnello M, Roux PP.

Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83. doi: 10.1128/MMBR.00031-10. Review. Erratum in: Microbiol Mol Biol Rev. 2012 Jun;76(2):496.

7.

PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5.

Kostenko S, Johannessen M, Moens U.

Cell Signal. 2009 May;21(5):712-8. doi: 10.1016/j.cellsig.2009.01.009. Epub 2009 Jan 8.

PMID:
19166925
8.

The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation.

Moens U, Kostenko S, Sveinbjørnsson B.

Genes (Basel). 2013 Mar 26;4(2):101-33. doi: 10.3390/genes4020101.

9.
10.

Elimination of protein kinase MK5/PRAK activity by targeted homologous recombination.

Shi Y, Kotlyarov A, Laabeta K, Gruber AD, Butt E, Marcus K, Meyer HE, Friedrich A, Volk HD, Gaestel M.

Mol Cell Biol. 2003 Nov;23(21):7732-41.

11.

Inhibition of phosphatidylinositol 3-kinase- and ERK MAPK-regulated protein synthesis reveals the pro-apoptotic properties of CD40 ligation in carcinoma cells.

Davies CC, Mason J, Wakelam MJ, Young LS, Eliopoulos AG.

J Biol Chem. 2004 Jan 9;279(2):1010-9. Epub 2003 Oct 27.

12.

14-3-3beta is a p90 ribosomal S6 kinase (RSK) isoform 1-binding protein that negatively regulates RSK kinase activity.

Cavet ME, Lehoux S, Berk BC.

J Biol Chem. 2003 May 16;278(20):18376-83. Epub 2003 Mar 4.

15.

Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4.

Aberg E, Perander M, Johansen B, Julien C, Meloche S, Keyse SM, Seternes OM.

J Biol Chem. 2006 Nov 17;281(46):35499-510. Epub 2006 Sep 13.

16.

Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5.

Déléris P, Rousseau J, Coulombe P, Rodier G, Tanguay PL, Meloche S.

J Cell Physiol. 2008 Dec;217(3):778-88. doi: 10.1002/jcp.21560.

PMID:
18720373
17.

Determinants that control the distinct subcellular localization of p38alpha-PRAK and p38beta-PRAK complexes.

Li Q, Zhang N, Zhang D, Wang Y, Lin T, Wang Y, Zhou H, Ye Z, Zhang F, Lin SC, Han J.

J Biol Chem. 2008 Apr 18;283(16):11014-23. doi: 10.1074/jbc.M709682200. Epub 2008 Feb 11.

18.

Differential localization of MAPK-activated protein kinases RSK1 and MSK1 in mouse brain.

Heffron D, Mandell JW.

Brain Res Mol Brain Res. 2005 May 20;136(1-2):134-41. Epub 2005 Feb 25.

PMID:
15893597
19.
20.

Specificity of signaling from MAPKs to MAPKAPKs: kinases' tango nuevo.

Gaestel M.

Front Biosci. 2008 May 1;13:6050-9. Review.

PMID:
18508642

Supplemental Content

Support Center