Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Connecting energy landscapes with experimental rates for aminoacyl-tRNA accommodation in the ribosome.

Whitford PC, Onuchic JN, Sanbonmatsu KY.

J Am Chem Soc. 2010 Sep 29;132(38):13170-1. doi: 10.1021/ja1061399.

2.

Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways.

Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY.

RNA. 2010 Jun;16(6):1196-204. doi: 10.1261/rna.2035410. Epub 2010 Apr 28.

3.

A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome.

Polikanov YS, Steitz TA, Innis CA.

Nat Struct Mol Biol. 2014 Sep;21(9):787-93. doi: 10.1038/nsmb.2871. Epub 2014 Aug 17.

4.

Polyelectrolyte behavior and kinetics of aminoacyl-tRNA on the ribosome.

Spasic A, Sitha S, Korchak M, Chu S, Mohanty U.

J Phys Chem B. 2008 Apr 10;112(14):4161-3. doi: 10.1021/jp711478t. Epub 2008 Mar 20.

PMID:
18351762
5.

Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy.

Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M, Frank J.

Nat Struct Biol. 2003 Nov;10(11):899-906. Epub 2003 Oct 19. Erratum in: Nat Struct Biol. 2003 Dec;10(12):1074.

PMID:
14566331
6.

Perturbation of the tRNA tertiary core differentially affects specific steps of the elongation cycle.

Pan D, Zhang CM, Kirillov S, Hou YM, Cooperman BS.

J Biol Chem. 2008 Jun 27;283(26):18431-40. doi: 10.1074/jbc.M801560200. Epub 2008 Apr 30.

8.

Distinct functional classes of ram mutations in 16S rRNA.

McClory SP, Devaraj A, Fredrick K.

RNA. 2014 Apr;20(4):496-504. doi: 10.1261/rna.043331.113. Epub 2014 Feb 26.

9.

Capturing transition paths and transition states for conformational rearrangements in the ribosome.

Noel JK, Chahine J, Leite VB, Whitford PC.

Biophys J. 2014 Dec 16;107(12):2881-90. doi: 10.1016/j.bpj.2014.10.022.

10.

Structure of ratcheted ribosomes with tRNAs in hybrid states.

Julián P, Konevega AL, Scheres SH, Lázaro M, Gil D, Wintermeyer W, Rodnina MV, Valle M.

Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16924-7. doi: 10.1073/pnas.0809587105. Epub 2008 Oct 29.

11.

Simulating movement of tRNA into the ribosome during decoding.

Sanbonmatsu KY, Joseph S, Tung CS.

Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15854-9. Epub 2005 Oct 25.

12.

Alignment/misalignment hypothesis for tRNA selection by the ribosome.

Sanbonmatsu KY.

Biochimie. 2006 Aug;88(8):1075-89. Epub 2006 Jul 26. Review.

PMID:
16890341
13.
14.
15.

Lys53 of ribosomal protein L36AL and the CCA end of a tRNA at the P/E hybrid site are in close proximity on the human ribosome.

Hountondji C, Bulygin K, Woisard A, Tuffery P, Créchet JB, Pech M, Nierhaus KH, Karpova G, Baouz S.

Chembiochem. 2012 Aug 13;13(12):1791-7. doi: 10.1002/cbic.201200208.

PMID:
22865768
16.

Fluctuations of transfer RNAs between classical and hybrid states.

Kim HD, Puglisi JD, Chu S.

Biophys J. 2007 Nov 15;93(10):3575-82. Epub 2007 Aug 10.

17.

The interface between Escherichia coli elongation factor Tu and aminoacyl-tRNA.

Yikilmaz E, Chapman SJ, Schrader JM, Uhlenbeck OC.

Biochemistry. 2014 Sep 9;53(35):5710-20. doi: 10.1021/bi500533x. Epub 2014 Aug 25.

18.

Recognition and selection of tRNA in translation.

Rodnina MV, Gromadski KB, Kothe U, Wieden HJ.

FEBS Lett. 2005 Feb 7;579(4):938-42. Review.

19.

Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate.

Takahashi K, Ghag S, Chládek S.

Biochemistry. 1986 Dec 16;25(25):8330-6.

PMID:
3545292
20.

Identification of two distinct hybrid state intermediates on the ribosome.

Munro JB, Altman RB, O'Connor N, Blanchard SC.

Mol Cell. 2007 Feb 23;25(4):505-17.

Supplemental Content

Support Center