Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Potential of Arabidopsis systems biology to advance the biofuel field.

Vanholme R, Van Acker R, Boerjan W.

Trends Biotechnol. 2010 Nov;28(11):543-7. doi: 10.1016/j.tibtech.2010.07.008. Epub 2010 Aug 26.

PMID:
20800303
2.

[Application of systems biology and synthetic biology in strain improvement for biofuel production].

Zhao X, Bai F, Li Y.

Sheng Wu Gong Cheng Xue Bao. 2010 Jul;26(7):880-7. Review. Chinese.

PMID:
20954387
3.

Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.

Weng JK, Li X, Bonawitz ND, Chapple C.

Curr Opin Biotechnol. 2008 Apr;19(2):166-72. doi: 10.1016/j.copbio.2008.02.014. Epub 2008 Apr 9. Review.

PMID:
18403196
4.

Advances in modifying lignin for enhanced biofuel production.

Simmons BA, Loqué D, Ralph J.

Curr Opin Plant Biol. 2010 Jun;13(3):313-20. doi: 10.1016/j.pbi.2010.03.001. Epub 2010 Mar 30. Review.

PMID:
20359939
5.

Applications of systems biology towards microbial fuel production.

Gowen CM, Fong SS.

Trends Microbiol. 2011 Oct;19(10):516-24. doi: 10.1016/j.tim.2011.07.005. Epub 2011 Aug 24. Review.

PMID:
21871807
6.

C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.

Byrt CS, Grof CP, Furbank RT.

J Integr Plant Biol. 2011 Feb;53(2):120-35. doi: 10.1111/j.1744-7909.2010.01023.x. Review.

PMID:
21205189
7.

Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.

Harfouche A, Grant K, Selig M, Tsai D, Meilan R.

Recent Pat DNA Gene Seq. 2010 Jun;4(2):94-105. Review.

PMID:
20470242
8.

A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls.

Iwase A, Hideno A, Watanabe K, Mitsuda N, Ohme-Takagi M.

J Biotechnol. 2009 Jul 15;142(3-4):279-84. doi: 10.1016/j.jbiotec.2009.05.011. Epub 2009 Jun 2.

PMID:
19497342
9.

Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics.

Yang X, Ye CY, Bisaria A, Tuskan GA, Kalluri UC.

Plant Sci. 2011 Dec;181(6):675-87. doi: 10.1016/j.plantsci.2011.01.020. Epub 2011 Feb 17.

PMID:
21958710
10.

Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals.

Picataggio S.

Curr Opin Biotechnol. 2009 Jun;20(3):325-9. doi: 10.1016/j.copbio.2009.04.003. Epub 2009 May 27. Review.

PMID:
19481438
11.

Advanced biofuel production in microbes.

Peralta-Yahya PP, Keasling JD.

Biotechnol J. 2010 Feb;5(2):147-62. doi: 10.1002/biot.200900220. Review.

PMID:
20084640
12.

Industrial biotechnology: tools and applications.

Tang WL, Zhao H.

Biotechnol J. 2009 Dec;4(12):1725-39. doi: 10.1002/biot.200900127. Review.

PMID:
19844915
13.

Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.

Clomburg JM, Gonzalez R.

Appl Microbiol Biotechnol. 2010 Mar;86(2):419-34. doi: 10.1007/s00253-010-2446-1. Epub 2010 Feb 9. Review.

PMID:
20143230
14.

Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah 1-2 and C4H::F5H lines.

Patten AM, Jourdes M, Cardenas CL, Laskar DD, Nakazawa Y, Chung BY, Franceschi VR, Davin LB, Lewis NG.

Mol Biosyst. 2010 Mar;6(3):499-515. doi: 10.1039/b819206e. Epub 2009 Dec 10.

PMID:
20174679
15.

A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion.

Sommer MO, Church GM, Dantas G.

Mol Syst Biol. 2010 Apr 13;6:360. doi: 10.1038/msb.2010.16.

16.

New improvements for lignocellulosic ethanol.

Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F.

Curr Opin Biotechnol. 2009 Jun;20(3):372-80. doi: 10.1016/j.copbio.2009.05.009. Epub 2009 Jun 6. Review.

PMID:
19502048
17.

Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.

Jang YS, Park JM, Choi S, Choi YJ, Seung do Y, Cho JH, Lee SY.

Biotechnol Adv. 2012 Sep-Oct;30(5):989-1000. doi: 10.1016/j.biotechadv.2011.08.015. Epub 2011 Aug 25. Review.

PMID:
21889585
18.

Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass.

Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H.

Plant Biotechnol J. 2010 Apr;8(3):277-87. doi: 10.1111/j.1467-7652.2009.00458.x. Epub 2009 Dec 23.

19.

Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel--from systems biology to synthetic design.

Xie S, Syrenne R, Sun S, Yuan JS.

Curr Opin Biotechnol. 2014 Jun;27:195-203. doi: 10.1016/j.copbio.2014.02.007. Epub 2014 Mar 19. Review.

PMID:
24657913
20.

Cell-wall carbohydrates and their modification as a resource for biofuels.

Pauly M, Keegstra K.

Plant J. 2008 May;54(4):559-68. doi: 10.1111/j.1365-313X.2008.03463.x.

Supplemental Content

Support Center