Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Bioinspired optofluidic FRET lasers via DNA scaffolds.

Sun Y, Shopova SI, Wu CS, Arnold S, Fan X.

Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16039-42. doi: 10.1073/pnas.1003581107. Epub 2010 Aug 23.

2.

Optofluidic FRET lasers using aqueous quantum dots as donors.

Chen Q, Kiraz A, Fan X.

Lab Chip. 2016 Jan 21;16(2):353-9. doi: 10.1039/c5lc01004g.

3.

Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control.

Chen Q, Liu H, Lee W, Sun Y, Zhu D, Pei H, Fan C, Fan X.

Lab Chip. 2013 Sep 7;13(17):3351-4. doi: 10.1039/c3lc50629k. Epub 2013 Jul 12.

PMID:
23846506
4.

Highly sensitive fluorescent protein FRET detection using optofluidic lasers.

Chen Q, Zhang X, Sun Y, Ritt M, Sivaramakrishnan S, Fan X.

Lab Chip. 2013 Jul 21;13(14):2679-81. doi: 10.1039/c3lc50207d.

PMID:
23545541
5.

Optofluidic lasers with a single molecular layer of gain.

Chen Q, Ritt M, Sivaramakrishnan S, Sun Y, Fan X.

Lab Chip. 2014 Dec 21;14(24):4590-5. doi: 10.1039/c4lc00872c. Epub 2014 Oct 14.

6.

Versatile optofluidic ring resonator lasers based on microdroplets.

Lee W, Luo Y, Zhu Q, Fan X.

Opt Express. 2011 Sep 26;19(20):19668-74. doi: 10.1364/OE.19.019668.

PMID:
21996908
7.

Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.

Eggeling C, Widengren J, Brand L, Schaffer J, Felekyan S, Seidel CA.

J Phys Chem A. 2006 Mar 9;110(9):2979-95.

PMID:
16509620
8.

Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer.

Shopova SI, Cupps JM, Zhang P, Henderson EP, Lacey S, Fan X.

Opt Express. 2007 Oct 1;15(20):12735-42.

PMID:
19550541
9.

Optofluidic chlorophyll lasers.

Chen YC, Chen Q, Fan X.

Lab Chip. 2016 Jun 21;16(12):2228-35. doi: 10.1039/c6lc00512h. Epub 2016 May 25.

10.
11.

Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.

Ranjit S, Gurunathan K, Levitus M.

J Phys Chem B. 2009 Jun 4;113(22):7861-6. doi: 10.1021/jp810842u.

PMID:
19473039
12.

Intracavity DNA melting analysis with optofluidic lasers.

Lee W, Fan X.

Anal Chem. 2012 Nov 6;84(21):9558-63. doi: 10.1021/ac302416g. Epub 2012 Oct 9.

PMID:
23017119
13.

Assembling programmable FRET-based photonic networks using designer DNA scaffolds.

Buckhout-White S, Spillmann CM, Algar WR, Khachatrian A, Melinger JS, Goldman ER, Ancona MG, Medintz IL.

Nat Commun. 2014 Dec 11;5:5615. doi: 10.1038/ncomms6615.

14.

Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.

He L, Bradrick TD, Karpova TS, Wu X, Fox MH, Fischer R, McNally JG, Knutson JR, Grammer AC, Lipsky PE.

Cytometry A. 2003 May;53(1):39-54.

15.

Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser.

Sun Y, Booker CF, Kumari S, Day RN, Davidson M, Periasamy A.

J Biomed Opt. 2009 Sep-Oct;14(5):054009. doi: 10.1117/1.3227036.

16.

CTAB enhancement of FRET in DNA structures.

Oh T, Takahashi T, Kim S, Heller MJ.

J Biophotonics. 2016 Jan;9(1-2):49-54. doi: 10.1002/jbio.201500221. Epub 2015 Nov 4.

PMID:
26530400
17.

Characterization of nucleobase analogue FRET acceptor tCnitro.

Preus S, Börjesson K, Kilså K, Albinsson B, Wilhelmsson LM.

J Phys Chem B. 2010 Jan 21;114(2):1050-6. doi: 10.1021/jp909471b.

PMID:
20039634
18.

A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams.

Yang Y, Liu AQ, Lei L, Chin LK, Ohl CD, Wang QJ, Yoon HS.

Lab Chip. 2011 Sep 21;11(18):3182-7. doi: 10.1039/c1lc20435a. Epub 2011 Aug 9.

PMID:
21826360
19.

Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.

Nicoli F, Barth A, Bae W, Neukirchinger F, Crevenna AH, Lamb DC, Liedl T.

ACS Nano. 2017 Nov 28;11(11):11264-11272. doi: 10.1021/acsnano.7b05631. Epub 2017 Nov 1.

PMID:
29063765
20.

Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.

Spillmann CM, Ancona MG, Buckhout-White S, Algar WR, Stewart MH, Susumu K, Huston AL, Goldman ER, Medintz IL.

ACS Nano. 2013 Aug 27;7(8):7101-18. doi: 10.1021/nn402468t. Epub 2013 Jul 11.

PMID:
23844838

Supplemental Content

Support Center