Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Modification of polymer networks with bone sialoprotein promotes cell attachment and spreading.

Chan WD, Goldberg HA, Hunter GK, Dixon SJ, Rizkalla AS.

J Biomed Mater Res A. 2010 Sep 1;94(3):945-52. doi: 10.1002/jbm.a.32715.

PMID:
20730931
2.

Tissue engineering scaffolds for the regeneration of craniofacial bone.

Chan WD, Perinpanayagam H, Goldberg HA, Hunter GK, Dixon SJ, Santos GC Jr, Rizkalla AS.

J Can Dent Assoc. 2009 Jun;75(5):373-7.

3.

Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering.

Fernandez JM, Molinuevo MS, Cortizo AM, McCarthy AD, Cortizo MS.

J Biomater Sci Polym Ed. 2010;21(10):1297-312. doi: 10.1163/092050609X12517190417632.

PMID:
20534186
4.

Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.

Allo BA, Rizkalla AS, Mequanint K.

Langmuir. 2010 Dec 7;26(23):18340-8. doi: 10.1021/la102845k.

PMID:
21050002
5.

Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration.

Lee H, Yeo M, Ahn S, Kang DO, Jang CH, Lee H, Park GM, Kim GH.

J Biomed Mater Res B Appl Biomater. 2011 May;97(2):263-70. doi: 10.1002/jbm.b.31809.

PMID:
21384546
6.

Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration.

Raucci MG, D'Antò V, Guarino V, Sardella E, Zeppetelli S, Favia P, Ambrosio L.

Acta Biomater. 2010 Oct;6(10):4090-9. doi: 10.1016/j.actbio.2010.04.018.

PMID:
20417736
7.

Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.

Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S.

Tissue Eng Part A. 2008 Nov;14(11):1787-97. doi: 10.1089/ten.tea.2007.0393.

PMID:
18657027
8.

Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.

Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S.

Biomaterials. 2008 Dec;29(34):4532-9. doi: 10.1016/j.biomaterials.2008.08.007.

PMID:
18757094
9.

Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.

Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, Hutmacher DW.

Tissue Eng Part A. 2009 Oct;15(10):3013-24. doi: 10.1089/ten.TEA.2008.0355.

PMID:
19331580
10.

Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds.

Xiao X, Liu R, Huang Q.

J Mater Sci Mater Med. 2008 Nov;19(11):3429-35. doi: 10.1007/s10856-008-3499-x.

PMID:
18574674
11.

Controlled vacuum seeding as a means of generating uniform cellular distribution in electrospun polycaprolactone (PCL) scaffolds.

Chen M, Michaud H, Bhowmick S.

J Biomech Eng. 2009 Jul;131(7):074521. doi: 10.1115/1.3173283.

PMID:
19640157
12.

Comparison of cellular proliferation on dense and porous PCL scaffolds.

Saşmazel HT, Gümüşderelioğlu M, Gürpinar A, Onur MA.

Biomed Mater Eng. 2008;18(3):119-28.

PMID:
18725692
13.
14.

Biocompatibility of plasma enhanced chemical vapor deposited poly(2-hydroxyethyl methacrylate) films for biomimetic replication of the intestinal basement membrane.

Pfluger CA, Burkey DD, Wang L, Sun B, Ziemer KS, Carrier RL.

Biomacromolecules. 2010 Jun 14;11(6):1579-84. doi: 10.1021/bm100209b.

PMID:
20441140
15.

Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.

Zhang X, Chang W, Lee P, Wang Y, Yang M, Li J, Kumbar SG, Yu X.

PLoS One. 2014 Jan 27;9(1):e85871. doi: 10.1371/journal.pone.0085871.

16.

Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.

Wang J, Yu X.

Acta Biomater. 2010 Aug;6(8):3004-12. doi: 10.1016/j.actbio.2010.01.045.

PMID:
20144749
17.

Fabrication of polycaprolactone scaffolds using a sacrificial compression-molding process.

Yao D, Smith A, Nagarajan P, Vasquez A, Dang L, Chaudhry GR.

J Biomed Mater Res B Appl Biomater. 2006 May;77(2):287-95.

PMID:
16292759
18.

Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.

Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, Hatton PV, Reis RL, Neves NM.

Acta Biomater. 2010 Mar;6(3):1149-57. doi: 10.1016/j.actbio.2009.09.006.

PMID:
19788942
19.

Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering.

Flynn L, Dalton PD, Shoichet MS.

Biomaterials. 2003 Oct;24(23):4265-72.

PMID:
12853258
20.

A facile strategy for the modification of polyethylene substrates with non-fouling, bioactive poly(poly(ethylene glycol) methacrylate) brushes.

Lavanant L, Pullin B, Hubbell JA, Klok HA.

Macromol Biosci. 2010 Jan 11;10(1):101-8. doi: 10.1002/mabi.200900205.

PMID:
19890949
Items per page

Supplemental Content

Support Center