Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 857

1.

Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes.

Will C, Thürmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R.

Appl Environ Microbiol. 2010 Oct;76(20):6751-9. doi: 10.1128/AEM.01063-10. Epub 2010 Aug 20.

2.
3.

Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils.

Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R.

PLoS One. 2011 Feb 16;6(2):e17000. doi: 10.1371/journal.pone.0017000.

4.

Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils.

Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EK, Linsenmair KE, Pfeiffer S, Renner S, Schöning I, Weisser WW, Wells K, Fischer M, Overmann J, Friedrich MW.

Appl Environ Microbiol. 2012 Oct;78(20):7398-406. Epub 2012 Aug 10.

5.

Microbial communities and bacterial diversity of spruce, hemlock and grassland soils of Tatachia Forest, Taiwan.

Selvam A, Tsai SH, Liu CP, Chen IC, Chang CH, Yang SS.

J Environ Sci Health B. 2010 Jul;45(5):386-98. doi: 10.1080/03601231003799960.

PMID:
20512729
6.

Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques.

Ge Y, Chen C, Xu Z, Eldridge SM, Chan KY, He Y, He JZ.

Environ Sci Pollut Res Int. 2010 Mar;17(3):807-15. doi: 10.1007/s11356-009-0185-6. Epub 2009 Jun 5.

PMID:
19499260
7.

Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions.

Serkebaeva YM, Kim Y, Liesack W, Dedysh SN.

PLoS One. 2013 May 21;8(5):e63994. doi: 10.1371/journal.pone.0063994. Print 2013.

8.

Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

Lynn TM, Liu Q, Hu Y, Yuan H, Wu X, Khai AA, Wu J, Ge T.

Arch Microbiol. 2017 Jul;199(5):711-721. doi: 10.1007/s00203-017-1347-4. Epub 2017 Feb 23.

PMID:
28233042
9.

Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest.

Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM, Monteiro RA, Baura VA, Pedrosa FO.

Appl Environ Microbiol. 2010 Jul;76(14):4744-9. doi: 10.1128/AEM.03025-09. Epub 2010 May 21.

10.

Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

Navarro-Noya YE, Jan-Roblero J, González-Chávez Mdel C, Hernández-Gama R, Hernández-Rodríguez C.

Antonie Van Leeuwenhoek. 2010 May;97(4):335-49. doi: 10.1007/s10482-010-9413-9. Epub 2010 Jan 20.

PMID:
20084459
11.

Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil.

Cébron A, Beguiristain T, Faure P, Norini MP, Masfaraud JF, Leyval C.

Appl Environ Microbiol. 2009 Oct;75(19):6322-30. doi: 10.1128/AEM.02862-08. Epub 2009 Jul 24.

12.

Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India.

Yousuf B, Sanadhya P, Keshri J, Jha B.

BMC Microbiol. 2012 Jul 26;12:150. doi: 10.1186/1471-2180-12-150.

13.

Bacterial diversity at different depths in lead-zinc mine tailings as revealed by 16S rRNA gene libraries.

Zhang HB, Shi W, Yang MX, Sha T, Zhao ZW.

J Microbiol. 2007 Dec;45(6):479-84.

14.

Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers.

Brons JK, van Elsas JD.

Appl Environ Microbiol. 2008 May;74(9):2717-27. doi: 10.1128/AEM.02195-07. Epub 2008 Feb 29.

15.

Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil.

Newsham KK, Pearce DA, Bridge PD.

Microbiol Res. 2010 Sep 20;165(7):523-30. doi: 10.1016/j.micres.2009.11.005. Epub 2009 Dec 16.

16.

The effect of nutrient deposition on bacterial communities in Arctic tundra soil.

Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA.

Environ Microbiol. 2010 Jul;12(7):1842-54. doi: 10.1111/j.1462-2920.2010.02189.x. Epub 2010 Mar 7.

PMID:
20236166
17.

Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia.

Qi X, Wang E, Xing M, Zhao W, Chen X.

World J Microbiol Biotechnol. 2012 May;28(5):2257-65. doi: 10.1007/s11274-012-1033-2. Epub 2012 Mar 9.

PMID:
22806049
18.

Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too.

Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R, Rahim RA, Husni MH, Chun J, Adams JM.

Microb Ecol. 2012 Aug;64(2):474-84. doi: 10.1007/s00248-012-0028-8. Epub 2012 Feb 23.

PMID:
22395784
19.

Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2.

Zhou J, Deng Y, Luo F, He Z, Yang Y.

MBio. 2011 Jul 26;2(4). pii: e00122-11. doi: 10.1128/mBio.00122-11. Print 2011.

20.

Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome.

Simon C, Wiezer A, Strittmatter AW, Daniel R.

Appl Environ Microbiol. 2009 Dec;75(23):7519-26. doi: 10.1128/AEM.00946-09. Epub 2009 Oct 2.

Supplemental Content

Support Center