Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

The yeast ubiquitin-like domain protein Mdy2 is required for microtubule-directed nuclear migration and localizes to cytoplasmic granules in response to heat stress.

Cohnen A, Bielig H, Hollenberg CP, Hu Z, Ramezani-Rad M.

Cytoskeleton (Hoboken). 2010 Oct;67(10):635-49. doi: 10.1002/cm.20477.

PMID:
20722039
2.

Nuclear import of UBL-domain protein Mdy2 is required for heat-induced stress response in Saccharomyces cerevisiae.

Arhzaouy K, Ramezani-Rad M.

PLoS One. 2012;7(12):e52956. doi: 10.1371/journal.pone.0052956. Epub 2012 Dec 28.

3.

Mdy2, a ubiquitin-like (UBL)-domain protein, is required for efficient mating in Saccharomyces cerevisiae.

Hu Z, Potthoff B, Hollenberg CP, Ramezani-Rad M.

J Cell Sci. 2006 Jan 15;119(Pt 2):326-38. Epub 2006 Jan 3.

4.

SGT2 and MDY2 interact with molecular chaperone YDJ1 in Saccharomyces cerevisiae.

Liou ST, Cheng MY, Wang C.

Cell Stress Chaperones. 2007 Spring;12(1):59-70.

5.

Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity.

Rinnerthaler M, Lejskova R, Grousl T, Stradalova V, Heeren G, Richter K, Breitenbach-Koller L, Malinsky J, Hasek J, Breitenbach M.

PLoS One. 2013 Oct 28;8(10):e77791. doi: 10.1371/journal.pone.0077791. eCollection 2013.

6.

A role for the karyopherin Kap123p in microtubule stability.

Ptak C, Anderson AM, Scott RJ, Van de Vosse D, Rogers RS, Sydorskyy Y, Aitchison JD, Wozniak RW.

Traffic. 2009 Nov;10(11):1619-34. doi: 10.1111/j.1600-0854.2009.00978.x. Epub 2009 Aug 22.

8.

Ubiquitin chains in the Dsk2 UBL domain mediate Dsk2 stability and protein degradation in yeast.

Sekiguchi T, Sasaki T, Funakoshi M, Ishii T, Saitoh YH, Kaneko S, Kobayashi H.

Biochem Biophys Res Commun. 2011 Aug 5;411(3):555-61. doi: 10.1016/j.bbrc.2011.06.183. Epub 2011 Jul 5.

9.

Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton in Saccharomyces cerevisiae.

Fujiwara T, Tanaka K, Inoue E, Kikyo M, Takai Y.

Mol Cell Biol. 1999 Dec;19(12):8016-27.

10.

Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.

Izawa S, Kita T, Ikeda K, Inoue Y.

Biochem J. 2008 Aug 15;414(1):111-9. doi: 10.1042/BJ20071567.

PMID:
18442359
12.

Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

Grousl T, Ivanov P, Malcova I, Pompach P, Frydlova I, Slaba R, Senohrabkova L, Novakova L, Hasek J.

PLoS One. 2013;8(2):e57083. doi: 10.1371/journal.pone.0057083. Epub 2013 Feb 25.

13.

The mating-specific Galpha interacts with a kinesin-14 and regulates pheromone-induced nuclear migration in budding yeast.

Zaichick SV, Metodiev MV, Nelson SA, Durbrovskyi O, Draper E, Cooper JA, Stone DE.

Mol Biol Cell. 2009 Jun;20(12):2820-30. doi: 10.1091/mbc.E09-01-0069. Epub 2009 Apr 22.

15.

Localization of nuclear retained mRNAs in Saccharomyces cerevisiae.

Thomsen R, Libri D, Boulay J, Rosbash M, Jensen TH.

RNA. 2003 Sep;9(9):1049-57.

16.

ER membrane protein complex required for nuclear fusion.

Ng DT, Walter P.

J Cell Biol. 1996 Feb;132(4):499-509.

17.

Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae.

Meier KD, Deloche O, Kajiwara K, Funato K, Riezman H.

Mol Biol Cell. 2006 Mar;17(3):1164-75. Epub 2005 Dec 28.

19.
20.

Microtubule dynamics in the budding yeast mating pathway.

Molk JN, Bloom K.

J Cell Sci. 2006 Sep 1;119(Pt 17):3485-90. Review.

Supplemental Content

Support Center