Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 189

1.

Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness.

Huang L, Cao Z, Meyer HM, Liaw PK, Garlea E, Dunlap JR, Zhang T, He W.

Acta Biomater. 2011 Jan;7(1):395-405. doi: 10.1016/j.actbio.2010.08.002. Epub 2010 Aug 13.

PMID:
20709197
2.

Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications.

Huang L, Yokoyama Y, Wu W, Liaw PK, Pang S, Inoue A, Zhang T, He W.

J Biomed Mater Res B Appl Biomater. 2012 Aug;100(6):1472-82. doi: 10.1002/jbm.b.32715. Epub 2012 Jun 12.

PMID:
22689253
3.

Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.

Hua N, Huang L, Chen W, He W, Zhang T.

Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:400-10. doi: 10.1016/j.msec.2014.08.049. Epub 2014 Aug 30.

PMID:
25280721
4.

Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces.

Lavenus S, Pilet P, Guicheux J, Weiss P, Louarn G, Layrolle P.

Acta Biomater. 2011 Apr;7(4):1525-34. doi: 10.1016/j.actbio.2010.12.033. Epub 2010 Dec 31.

PMID:
21199693
5.

Macrophage responses to a Zr-based bulk metallic glass.

Huang L, Zhang T, Liaw PK, He W.

J Biomed Mater Res A. 2014 Oct;102(10):3369-78. doi: 10.1002/jbm.a.35009. Epub 2013 Oct 25.

PMID:
24166768
6.

A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response.

Huang L, Pu C, Fisher RK, Mountain DJ, Gao Y, Liaw PK, Zhang W, He W.

Acta Biomater. 2015 Oct;25:356-68. doi: 10.1016/j.actbio.2015.07.012. Epub 2015 Jul 7.

PMID:
26162585
7.

Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses.

Li J, Shi LL, Zhu ZD, He Q, Ai HJ, Xu J.

Mater Sci Eng C Mater Biol Appl. 2013 May 1;33(4):2113-21. doi: 10.1016/j.msec.2013.01.033. Epub 2013 Jan 20.

PMID:
23498239
8.

In vitro biocompatibility of an ultrafine grained zirconium.

Saldaña L, Méndez-Vilas A, Jiang L, Multigner M, González-Carrasco JL, Pérez-Prado MT, González-Martín ML, Munuera L, Vilaboa N.

Biomaterials. 2007 Oct;28(30):4343-54. Epub 2007 Jul 10.

PMID:
17624424
9.

The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia.

Setzer B, Bächle M, Metzger MC, Kohal RJ.

Biomaterials. 2009 Feb;30(6):979-90. doi: 10.1016/j.biomaterials.2008.10.054. Epub 2008 Nov 22.

PMID:
19027946
10.

Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces.

Park JW, Kim YJ, Jang JH, Kwon TG, Bae YC, Suh JY.

Acta Biomater. 2010 Apr;6(4):1661-70. doi: 10.1016/j.actbio.2009.10.011. Epub 2009 Oct 9.

PMID:
19819355
11.

The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro.

Sista S, Wen C, Hodgson PD, Pande G.

J Biomed Mater Res A. 2011 Apr;97(1):27-36. doi: 10.1002/jbm.a.33013. Epub 2011 Feb 9.

PMID:
21308982
12.

The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.

Yu WQ, Jiang XQ, Zhang FQ, Xu L.

J Biomed Mater Res A. 2010 Sep 15;94(4):1012-22. doi: 10.1002/jbm.a.32687.

PMID:
20694968
13.

Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition.

Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z.

Biomaterials. 1998 Dec;19(23):2219-32.

PMID:
9884063
14.

Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds.

San Miguel B, Kriauciunas R, Tosatti S, Ehrbar M, Ghayor C, Textor M, Weber FE.

J Biomed Mater Res A. 2010 Sep 15;94(4):1023-33. doi: 10.1002/jbm.a.32773.

PMID:
20694969
15.

The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability.

Zheng Z, Zhang L, Kong L, Wang A, Gong Y, Zhang X.

J Biomed Mater Res A. 2009 May;89(2):453-65. doi: 10.1002/jbm.a.31979.

PMID:
18431777
16.

Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

Liu L, Qiu CL, Chen Q, Chan KC, Zhang SM.

J Biomed Mater Res A. 2008 Jul;86(1):160-9.

PMID:
17957719
17.

The influence of surface energy on early adherent events of osteoblast on titanium substrates.

Lai HC, Zhuang LF, Liu X, Wieland M, Zhang ZY, Zhang ZY.

J Biomed Mater Res A. 2010 Apr;93(1):289-96. doi: 10.1002/jbm.a.32542.

PMID:
19562750
18.

The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte.

Morrison ML, Buchanan RA, Leon RV, Liu CT, Green BA, Liaw PK, Horton JA.

J Biomed Mater Res A. 2005 Sep 1;74(3):430-8.

PMID:
16013063
19.

In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses.

Li H, He W, Pang S, Liaw PK, Zhang T.

Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:632-41. doi: 10.1016/j.msec.2016.06.022. Epub 2016 Jun 8.

PMID:
27524063
20.

Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.

Park JW, Kim HK, Kim YJ, Jang JH, Song H, Hanawa T.

Acta Biomater. 2010 Jul;6(7):2843-51. doi: 10.1016/j.actbio.2010.01.017. Epub 2010 Jan 18.

PMID:
20085830

Supplemental Content

Support Center