Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

A novel spatial and stochastic model to evaluate the within- and between-farm transmission of classical swine fever virus. I. General concepts and description of the model.

Martínez-López B, Ivorra B, Ramos AM, Sánchez-Vizcaíno JM.

Vet Microbiol. 2011 Jan 27;147(3-4):300-9. doi: 10.1016/j.vetmic.2010.07.009. Epub 2010 Jul 22.

PMID:
20708351
2.
3.

A novel spatial and stochastic model to evaluate the within and between farm transmission of classical swine fever virus: II validation of the model.

Martínez-López B, Ivorra B, Ngom D, Ramos AM, Sánchez-Vizcaíno JM.

Vet Microbiol. 2012 Feb 24;155(1):21-32. doi: 10.1016/j.vetmic.2011.08.008. Epub 2011 Aug 10.

PMID:
21899960
4.
5.

Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: the example of Bulgaria.

Martínez-López B, Ivorra B, Ramos AM, Fernández-Carrión E, Alexandrov T, Sánchez-Vizcaíno JM.

Vet Microbiol. 2013 Jul 26;165(1-2):79-85. doi: 10.1016/j.vetmic.2013.01.045. Epub 2013 Feb 8.

PMID:
23465838
6.
7.

Evaluation of control and surveillance strategies for classical swine fever using a simulation model.

Dürr S, Zu Dohna H, Di Labio E, Carpenter TE, Doherr MG.

Prev Vet Med. 2013 Jan 1;108(1):73-84. doi: 10.1016/j.prevetmed.2012.07.006. Epub 2012 Aug 1.

PMID:
22858424
8.

Local spread of classical swine fever upon virus introduction into The Netherlands: mapping of areas at high risk.

Boender GJ, Nodelijk G, Hagenaars TJ, Elbers AR, de Jong MC.

BMC Vet Res. 2008 Feb 25;4:9. doi: 10.1186/1746-6148-4-9.

9.

Quantification of the transmission of classical swine fever virus between herds during the 1997-1998 epidemic in The Netherlands.

Stegeman A, Elbers AR, Smak J, de Jong MC.

Prev Vet Med. 1999 Dec 1;42(3-4):219-34.

PMID:
10619157
10.

Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.

Karsten S, Rave G, Krieter J.

Vet Microbiol. 2005 Jul 1;108(3-4):199-205.

PMID:
15939558
11.

A stochastic model to quantify the risk of introduction of classical swine fever virus through import of domestic and wild boars.

Martínez-López B, Perez AM, Sánchez-Vizcaíno JM.

Epidemiol Infect. 2009 Oct;137(10):1505-15. doi: 10.1017/S0950268808001623. Epub 2009 Feb 26.

PMID:
19243649
12.

Quantification of the effect of control strategies on classical swine fever epidemics.

Klinkenberg D, Everts-van der Wind A, Graat EA, de Jong MC.

Math Biosci. 2003 Dec;186(2):145-73.

PMID:
14583170
13.

Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark.

Boklund A, Goldbach SG, Uttenthal A, Alban L.

Prev Vet Med. 2008 Jul 15;85(3-4):187-206. doi: 10.1016/j.prevetmed.2008.01.012. Epub 2008 Mar 12.

PMID:
18339438
15.

Within-farm spread of classical swine fever virus--a blueprint for a stochastic simulation model.

Stärk KD, Pfeiffer DU, Morris RS.

Vet Q. 2000 Jan;22(1):36-43.

PMID:
10682386
16.
17.

Neighbourhood infections of classical swine fever during the 1997-1998 epidemic in The Netherlands.

Crauwels AP, Nielen M, Elbers AR, Stegeman JA, Tielen MJ.

Prev Vet Med. 2003 Dec 12;61(4):263-77.

PMID:
14623411
18.
19.

The classical swine fever epidemic 1997-1998 in The Netherlands: descriptive epidemiology.

Elber AR, Stegeman A, Moser H, Ekker HM, Smak JA, Pluimers FH.

Prev Vet Med. 1999 Dec 1;42(3-4):157-84.

PMID:
10619154
20.

Supplemental Content

Support Center