Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93


Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington's disease.

del Toro D, Xifró X, Pol A, Humbert S, Saudou F, Canals JM, Alberch J.

J Neurochem. 2010 Oct;115(1):153-67. doi: 10.1111/j.1471-4159.2010.06912.x. Epub 2010 Aug 12.


Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease.

Valencia A, Reeves PB, Sapp E, Li X, Alexander J, Kegel KB, Chase K, Aronin N, DiFiglia M.

J Neurosci Res. 2010 Jan;88(1):179-90. doi: 10.1002/jnr.22184.


Calcineurin is involved in the early activation of NMDA-mediated cell death in mutant huntingtin knock-in striatal cells.

Xifró X, García-Martínez JM, Del Toro D, Alberch J, Pérez-Navarro E.

J Neurochem. 2008 Jun;105(5):1596-612. doi: 10.1111/j.1471-4159.2008.05252.x. Epub 2008 Jan 24.


Loss of caveolin-1 expression in knock-in mouse model of Huntington's disease suppresses pathophysiology in vivo.

Trushina E, Canaria CA, Lee DY, McMurray CT.

Hum Mol Genet. 2014 Jan 1;23(1):129-44. doi: 10.1093/hmg/ddt406. Epub 2013 Sep 10.


Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington's disease.

Fan J, Cowan CM, Zhang LY, Hayden MR, Raymond LA.

J Neurosci. 2009 Sep 2;29(35):10928-38. doi: 10.1523/JNEUROSCI.2491-09.2009.


Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity.

Cowan CM, Fan MM, Fan J, Shehadeh J, Zhang LY, Graham RK, Hayden MR, Raymond LA.

J Neurosci. 2008 Nov 26;28(48):12725-35. doi: 10.1523/JNEUROSCI.4619-08.2008.


Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease.

Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA.

Neuron. 2002 Mar 14;33(6):849-60.


Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo.

Graham RK, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi MA, Metzler M, Bissada N, Wang L, Faull RL, Gray M, Yang XW, Raymond LA, Hayden MR.

J Neurosci. 2010 Nov 10;30(45):15019-29. doi: 10.1523/JNEUROSCI.2071-10.2010.


Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.

Starling AJ, André VM, Cepeda C, de Lima M, Chandler SH, Levine MS.

J Neurosci Res. 2005 Nov 1;82(3):377-86.


Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.

Hansson O, Castilho RF, Korhonen L, Lindholm D, Bates GP, Brundin P.

J Neurochem. 2001 Aug;78(4):694-703.


Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.

Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I.

Neurobiol Dis. 2008 Jul;31(1):80-8. doi: 10.1016/j.nbd.2008.03.010. Epub 2008 Apr 16.


Mutant huntingtin enhances excitotoxic cell death.

Zeron MM, Chen N, Moshaver A, Lee AT, Wellington CL, Hayden MR, Raymond LA.

Mol Cell Neurosci. 2001 Jan;17(1):41-53.


Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A.

Metzler M, Gan L, Mazarei G, Graham RK, Liu L, Bissada N, Lu G, Leavitt BR, Hayden MR.

J Neurosci. 2010 Oct 27;30(43):14318-29. doi: 10.1523/JNEUROSCI.1589-10.2010.


Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.

Yu ZX, Li SH, Evans J, Pillarisetti A, Li H, Li XJ.

J Neurosci. 2003 Mar 15;23(6):2193-202.


Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution.

Abulrob A, Tauskela JS, Mealing G, Brunette E, Faid K, Stanimirovic D.

J Neurochem. 2005 Mar;92(6):1477-86.


Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.

Ginés S, Bosch M, Marco S, Gavaldà N, Díaz-Hernández M, Lucas JJ, Canals JM, Alberch J.

Eur J Neurosci. 2006 Feb;23(3):649-58.


Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, Becanovic K, Pouladi MA, Sathasivam K, Cha JH, Hannan AJ, Hayden MR, Leavitt BR, Dunnett SB, Ferrante RJ, Albin R, Shelbourne P, Delorenzi M, Augood SJ, Faull RL, Olson JM, Bates GP, Jones L, Luthi-Carter R.

Hum Mol Genet. 2007 Aug 1;16(15):1845-61. Epub 2007 May 21.


Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin.

Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR.

Cell. 2006 Jun 16;125(6):1179-91.


Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection.

Ponce J, de la Ossa NP, Hurtado O, Millan M, Arenillas JF, Dávalos A, Gasull T.

Stroke. 2008 Apr;39(4):1269-75. doi: 10.1161/STROKEAHA.107.498923. Epub 2008 Mar 6.


Emerging roles for cholesterol in Huntington's disease.

Valenza M, Cattaneo E.

Trends Neurosci. 2011 Sep;34(9):474-86. doi: 10.1016/j.tins.2011.06.005. Epub 2011 Jul 19. Review.


Supplemental Content

Support Center