Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Small-size microlens characterization by multiwavelength high-resolution interference microscopy.

Kim MS, Scharf T, Herzig HP.

Opt Express. 2010 Jul 5;18(14):14319-29. doi: 10.1364/OE.18.014319.

PMID:
20639916
2.

Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy.

Miccio L, Finizio A, Grilli S, Vespini V, Paturzo M, De Nicola S, Ferraro P.

Opt Express. 2009 Feb 16;17(4):2487-99.

PMID:
19219152
3.

Small-focus integral fiber lenses: modeling with the segmented beam-propagation method and near-field characterization.

Axelrod N, Lewis A, Ben Yosef N, Dekhter R, Fish G, Krol A.

Appl Opt. 2005 Mar 1;44(7):1270-82.

PMID:
15765707
4.

Bioresponsive hydrogel microlenses.

Kim J, Nayak S, Lyon LA.

J Am Chem Soc. 2005 Jul 6;127(26):9588-92.

PMID:
15984886
5.

Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications.

Mirkhalaf M, Murukeshan VM, Tor SB, Shinoj VK, Sathiyamoorthy K.

Rev Sci Instrum. 2011 Apr;82(4):043110. doi: 10.1063/1.3581217.

PMID:
21528998
6.

Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.

Wang SQ, Liu J, Gu BY, Wang YQ, Hu B, Sun XD, Di S.

J Opt Soc Am A Opt Image Sci Vis. 2007 Feb;24(2):512-6.

PMID:
17206267
7.

Laser micromachining of efficient fiber microlenses.

Presby HM, Benner AF, Edwards CA.

Appl Opt. 1990 Jun 20;29(18):2692-5. doi: 10.1364/AO.29.002692.

PMID:
20567315
8.

Evaluation of microlens properties in the presence of high spherical aberration.

Testorf M, Sinzinger S.

Appl Opt. 1995 Oct 1;34(28):6431-7. doi: 10.1364/AO.34.006431.

PMID:
21060490
9.

Reflowed solgel spherical microlens for high-efficiency optical coupling between a laser diode and a single-mode fiber.

He M, Yuan X, Bu J, Cheong WC, Moh KJ.

Appl Opt. 2005 Mar 10;44(8):1469-73.

PMID:
15796247
10.

A high numerical aperture, polymer-based, planar microlens array.

Tripathi A, Chokshi TV, Chronis N.

Opt Express. 2009 Oct 26;17(22):19908-18. doi: 10.1364/OE.17.019908.

PMID:
19997214
11.

Characterization of microlenses by digital holographic microscopy.

Charrière F, Kühn J, Colomb T, Montfort F, Cuche E, Emery Y, Weible K, Marquet P, Depeursinge C.

Appl Opt. 2006 Feb 10;45(5):829-35.

PMID:
16512524
12.

Direct Laser Printing of Tailored Polymeric Microlenses.

Florian C, Piazza S, Diaspro A, Serra P, Duocastella M.

ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17028-32. doi: 10.1021/acsami.6b05385. Epub 2016 Jun 27.

PMID:
27336194
13.

Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques.

Albero J, Nieradko L, Gorecki C, Ottevaere H, Gomez V, Thienpont H, Pietarinen J, Päivänranta B, Passilly N.

Opt Express. 2009 Apr 13;17(8):6283-92.

PMID:
19365454
14.

Design of microlenses with long focal depth based on the general focal length function.

Lin J, Liu J, Ye J, Liu S.

J Opt Soc Am A Opt Image Sci Vis. 2007 Jun;24(6):1747-51.

PMID:
17491644
15.

On the chromatic aberration of microlenses.

Ruffieux P, Scharf T, Herzig HP, Völkel R, Weible KJ.

Opt Express. 2006 May 29;14(11):4687-94.

PMID:
19516624
16.

Hydrodynamically tunable optofluidic cylindrical microlens.

Mao X, Waldeisen JR, Juluri BK, Huang TJ.

Lab Chip. 2007 Oct;7(10):1303-8. Epub 2007 Aug 2.

PMID:
17896014
17.

Actual focal length of a symmetric biconvex microlens and its application in determining the transmitted beam waist position.

Wang J, Barton JP.

Appl Opt. 2010 Oct 20;49(30):5828-36. doi: 10.1364/AO.49.005828.

PMID:
20962947
18.

Silicone microlenses and interference gratings.

Calixto S.

Appl Opt. 2002 Jun 1;41(16):3355-61.

PMID:
12064425
19.
20.

Supplemental Content

Support Center