Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

DOSY NMR for monitoring self aggregation of bifunctional organocatalysts: increasing enantioselectivity with decreasing catalyst concentration.

Jang HB, Rho HS, Oh JS, Nam EH, Park SE, Bae HY, Song CE.

Org Biomol Chem. 2010 Sep 7;8(17):3918-22. doi: 10.1039/c0Ob00047g.

PMID:
20623059
2.
3.

Enantioselective organocatalytic direct Michael addition of nitroalkanes to nitroalkenes promoted by a unique bifunctional DMAP-thiourea.

Rabalakos C, Wulff WD.

J Am Chem Soc. 2008 Oct 15;130(41):13524-5. doi: 10.1021/ja805390k.

PMID:
18808117
5.

Supramolecular catalysis with extended aggregates and gels: inversion of stereoselectivity caused by self-assembly.

Rodríguez-Llansola F, Miravet JF, Escuder B.

Chemistry. 2010 Jul 26;16(28):8480-6. doi: 10.1002/chem.201000654.

PMID:
20540050
6.
7.

Asymmetric hydrogenation catalyzed by a rhodium complex of (R)-(tert-butylmethylphosphino)(di-tert-butylphosphino)methane: scope of enantioselectivity and mechanistic study.

Gridnev ID, Imamoto T, Hoge G, Kouchi M, Takahashi H.

J Am Chem Soc. 2008 Feb 27;130(8):2560-72. doi: 10.1021/ja076542z.

PMID:
18237166
8.

Structural effects on the catalytic, emulsifying, and recycling properties of chiral amphiphilic dendritic organocatalysts.

Lo CM, Chow HF.

J Org Chem. 2009 Aug 7;74(15):5181-91. doi: 10.1021/jo9006128.

PMID:
19476330
10.

Structure-selectivity relationships and structure for a peptide-based enantioselective acylation catalyst.

Fierman MB, O'Leary DJ, Steinmetz WE, Miller SJ.

J Am Chem Soc. 2004 Jun 9;126(22):6967-71.

PMID:
15174866
11.

Probing interactions by means of pulsed field gradient nuclear magnetic resonance spectroscopy.

Cozzolino S, Sanna MG, Valentini M.

Magn Reson Chem. 2008;46 Suppl 1:S16-23. doi: 10.1002/mrc.2345. Review.

PMID:
18855336
12.

Bifunctional catalysis by natural cinchona alkaloids: a mechanism explained.

Cucinotta CS, Kosa M, Melchiorre P, Cavalli A, Gervasio FL.

Chemistry. 2009 Aug 10;15(32):7913-21. doi: 10.1002/chem.200900406.

PMID:
19492372
13.

Assembly state of catalytic modules as chiral switches in asymmetric Strecker amino acid synthesis.

Kato N, Mita T, Kanai M, Therrien B, Kawano M, Yamaguchi K, Danjo H, Sei Y, Sato A, Furusho S, Shibasaki M.

J Am Chem Soc. 2006 May 31;128(21):6768-9.

PMID:
16719439
14.

Bifunctional hydrogen-bond donors that bear a quinazoline or benzothiadiazine skeleton for asymmetric organocatalysis.

Inokuma T, Furukawa M, Uno T, Suzuki Y, Yoshida K, Yano Y, Matsuzaki K, Takemoto Y.

Chemistry. 2011 Sep 5;17(37):10470-7. doi: 10.1002/chem.201101338.

PMID:
21812044
15.

Self-association promoted conformational transition of (3R,4S,8R,9R)-9-[(3,5-bis(trifluoromethyl)phenyl))-thiourea](9-deoxy)-epi-cinchonine.

Király P, Soós T, Varga S, Vakulya B, Tárkányi G.

Magn Reson Chem. 2010 Jan;48(1):13-9. doi: 10.1002/mrc.2531.

PMID:
19862796
16.

Development of a continuous-flow system for asymmetric hydrogenation using self-supported chiral catalysts.

Shi L, Wang X, Sandoval CA, Wang Z, Li H, Wu J, Yu L, Ding K.

Chemistry. 2009 Sep 28;15(38):9855-67. doi: 10.1002/chem.200900899.

PMID:
19685536
17.

Controlling lipase enantioselectivity for organic synthesis.

Berglund P.

Biomol Eng. 2001 Aug;18(1):13-22. Review.

PMID:
11429309
18.
19.

The enantioselective Morita-Baylis-Hillman reaction and its aza counterpart.

Masson G, Housseman C, Zhu J.

Angew Chem Int Ed Engl. 2007;46(25):4614-28. Review.

PMID:
17397122
20.

Edge-to-face CH/pi aromatic interaction and molecular self-recognition in epi-cinchona-based bifunctional thiourea organocatalysis.

Tárkányi G, Király P, Varga S, Vakulya B, Soós T.

Chemistry. 2008;14(20):6078-86. doi: 10.1002/chem.200800197.

PMID:
18504723
Items per page

Supplemental Content

Support Center