Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Striatal microRNA controls cocaine intake through CREB signalling.

Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ.

Nature. 2010 Jul 8;466(7303):197-202. doi: 10.1038/nature09202.

2.

Neuroscience: MicroRNA knocks down cocaine.

Picciotto MR.

Nature. 2010 Jul 8;466(7303):194-5. doi: 10.1038/466194a. No abstract available.

PMID:
20613832
3.

Antisense-induced reduction in nucleus accumbens cyclic AMP response element binding protein attenuates cocaine reinforcement.

Choi KH, Whisler K, Graham DL, Self DW.

Neuroscience. 2006;137(2):373-83. Epub 2005 Dec 15.

PMID:
16359811
4.

A role for calmodulin-stimulated adenylyl cyclases in cocaine sensitization.

DiRocco DP, Scheiner ZS, Sindreu CB, Chan GC, Storm DR.

J Neurosci. 2009 Feb 25;29(8):2393-403. doi: 10.1523/JNEUROSCI.4356-08.2009.

5.

MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212.

Im HI, Hollander JA, Bali P, Kenny PJ.

Nat Neurosci. 2010 Sep;13(9):1120-7. doi: 10.1038/nn.2615. Epub 2010 Aug 15.

6.

MicroRNAs and Drug Addiction.

Bali P, Kenny PJ.

Front Genet. 2013 May 10;4:43. doi: 10.3389/fgene.2013.00043. eCollection 2013.

7.

GABA(B) receptor-positive modulation decreases selective molecular and behavioral effects of cocaine.

Lhuillier L, Mombereau C, Cryan JF, Kaupmann K.

Neuropsychopharmacology. 2007 Feb;32(2):388-98. Epub 2006 May 17.

8.

Corticotropin releasing factor-induced CREB activation in striatal neurons occurs via a novel Gβγ signaling pathway.

Stern CM, Luoma JI, Meitzen J, Mermelstein PG.

PLoS One. 2011 Mar 23;6(3):e18114. doi: 10.1371/journal.pone.0018114.

9.

Regulation of gene expression and cocaine reward by CREB and DeltaFosB.

McClung CA, Nestler EJ.

Nat Neurosci. 2003 Nov;6(11):1208-15. Epub 2003 Oct 19.

PMID:
14566342
10.

Loss of the Ca2+/calmodulin-dependent protein kinase type IV in dopaminoceptive neurons enhances behavioral effects of cocaine.

Bilbao A, Parkitna JR, Engblom D, Perreau-Lenz S, Sanchis-Segura C, Schneider M, Konopka W, Westphal M, Breen G, Desrivieres S, Klugmann M, Guindalini C, Vallada H, Laranjeira R, de Fonseca FR, Schumann G, Schütz G, Spanagel R.

Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17549-54. doi: 10.1073/pnas.0803959105. Epub 2008 Nov 10.

11.
13.

Working memory deficits and alterations of ERK and CREB phosphorylation following withdrawal from cocaine self-administration.

Fijał K, Nowak E, Leśkiewicz M, Budziszewska B, Filip M.

Pharmacol Rep. 2015 Oct;67(5):881-9. doi: 10.1016/j.pharep.2015.01.013. Epub 2015 Feb 7.

PMID:
26398380
14.

Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs.

Jonkman S, Kenny PJ.

Neuropsychopharmacology. 2013 Jan;38(1):198-211. doi: 10.1038/npp.2012.120. Epub 2012 Sep 12. Review.

15.

Prolonged Induction of miR-212/132 and REST Expression in Rat Striatum Following Cocaine Self-Administration.

Sadakierska-Chudy A, Frankowska M, Miszkiel J, Wydra K, Jastrzębska J, Filip M.

Mol Neurobiol. 2017 Apr;54(3):2241-2254. doi: 10.1007/s12035-016-9817-2. Epub 2016 Mar 5.

16.

Chronic cocaine self-administration modulates ERK1/2 and CREB responses to dopamine receptor agonists in striatal slices.

Hoffmann HM, Nadal R, Vignes M, Ortiz J.

Addict Biol. 2012 May;17(3):565-75. doi: 10.1111/j.1369-1600.2011.00353.x. Epub 2011 Aug 4.

PMID:
21812869
17.
19.

Regulation of cocaine-induced activator protein 1 transcription factors by the extracellular signal-regulated kinase pathway.

Radwanska K, Valjent E, Trzaskos J, Caboche J, Kaczmarek L.

Neuroscience. 2006;137(1):253-64. Epub 2005 Nov 2.

PMID:
16263220
20.

Region-specific tolerance to cocaine-regulated cAMP-dependent protein phosphorylation following chronic self-administration.

Edwards S, Graham DL, Bachtell RK, Self DW.

Eur J Neurosci. 2007 Apr;25(7):2201-13.

PMID:
17439498

Supplemental Content

Support Center