Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

The extracellular matrix glycoprotein tenascin-C is beneficial for spinal cord regeneration.

Chen J, Joon Lee H, Jakovcevski I, Shah R, Bhagat N, Loers G, Liu HY, Meiners S, Taschenberger G, Kügler S, Irintchev A, Schachner M.

Mol Ther. 2010 Oct;18(10):1769-77. doi: 10.1038/mt.2010.133. Epub 2010 Jul 6.

2.

Extracellular matrix alterations, accelerated leukocyte infiltration and enhanced axonal sprouting after spinal cord hemisection in tenascin-C-deficient mice.

Schreiber J, Schachner M, Schumacher U, Lorke DE.

Acta Histochem. 2013 Oct;115(8):865-78. doi: 10.1016/j.acthis.2013.04.009. Epub 2013 May 21.

PMID:
23701962
3.

Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.

Lee HJ, Jakovcevski I, Radonjic N, Hoelters L, Schachner M, Irintchev A.

Exp Neurol. 2009 Apr;216(2):365-74. doi: 10.1016/j.expneurol.2008.12.009. Epub 2008 Dec 30.

PMID:
19150614
4.

The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish.

Yu YM, Cristofanilli M, Valiveti A, Ma L, Yoo M, Morellini F, Schachner M.

Neuroscience. 2011 Jun 2;183:238-50. doi: 10.1016/j.neuroscience.2011.03.043. Epub 2011 Apr 2.

PMID:
21443931
5.

Analysis of combinatorial variability reveals selective accumulation of the fibronectin type III domains B and D of tenascin-C in injured brain.

Dobbertin A, Czvitkovich S, Theocharidis U, Garwood J, Andrews MR, Properzi F, Lin R, Fawcett JW, Faissner A.

Exp Neurol. 2010 Sep;225(1):60-73. doi: 10.1016/j.expneurol.2010.04.019. Epub 2010 May 5.

PMID:
20451518
6.

p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

Floriddia EM, Rathore KI, Tedeschi A, Quadrato G, Wuttke A, Lueckmann JM, Kigerl KA, Popovich PG, Di Giovanni S.

J Neurosci. 2012 Oct 3;32(40):13956-70. doi: 10.1523/JNEUROSCI.1925-12.2012.

7.
8.

Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury.

Jakovcevski I, Djogo N, Hölters LS, Szpotowicz E, Schachner M.

Neuroscience. 2013 Nov 12;252:1-12. doi: 10.1016/j.neuroscience.2013.07.067. Epub 2013 Aug 7.

PMID:
23933311
9.

Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.

Chen J, Wu J, Apostolova I, Skup M, Irintchev A, Kügler S, Schachner M.

Brain. 2007 Apr;130(Pt 4):954-69.

PMID:
17438016
10.

Adhesion molecules close homolog of L1 and tenascin-C affect blood-spinal cord barrier repair.

Peter NR, Shah RT, Chen J, Irintchev A, Schachner M.

Neuroreport. 2012 May 30;23(8):479-82. doi: 10.1097/WNR.0b013e3283531e39.

PMID:
22473292
11.

The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD.

Siddiqui S, Horvat-Bröcker A, Faissner A.

Neuron Glia Biol. 2008 Nov;4(4):271-83. doi: 10.1017/S1740925X09990020. Epub 2009 Jun 10.

PMID:
19508743
12.

Promotion of spinal cord regeneration by neural stem cell-secreted trimerized cell adhesion molecule L1.

He X, Knepper M, Ding C, Li J, Castro S, Siddiqui M, Schachner M.

PLoS One. 2012;7(9):e46223. doi: 10.1371/journal.pone.0046223. Epub 2012 Sep 25.

13.

Spinal cord regeneration.

Young W.

Cell Transplant. 2014;23(4-5):573-611. doi: 10.3727/096368914X678427. Review.

PMID:
24816452
14.

Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.

Yu Y, Schachner M.

Eur J Neurosci. 2013 Jul;38(2):2280-9. doi: 10.1111/ejn.12222. Epub 2013 Apr 22.

PMID:
23607754
16.

Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.

Collyer E, Catenaccio A, Lemaitre D, Diaz P, Valenzuela V, Bronfman F, Court FA.

Exp Neurol. 2014 Nov;261:451-61. doi: 10.1016/j.expneurol.2014.07.014. Epub 2014 Jul 28.

PMID:
25079366
17.

Polysialic acid glycomimetic promotes functional recovery and plasticity after spinal cord injury in mice.

Mehanna A, Jakovcevski I, Acar A, Xiao M, Loers G, Rougon G, Irintchev A, Schachner M.

Mol Ther. 2010 Jan;18(1):34-43. doi: 10.1038/mt.2009.235. Epub 2009 Oct 13.

18.

Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice.

Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, Yoshida T, Suzuki H.

J Neurosurg. 2016 Jun;124(6):1693-702. doi: 10.3171/2015.4.JNS15484. Epub 2015 Oct 16.

PMID:
26473781
19.

Tenascin-C is an inhibitory boundary molecule in the developing olfactory bulb.

Treloar HB, Ray A, Dinglasan LA, Schachner M, Greer CA.

J Neurosci. 2009 Jul 29;29(30):9405-16. doi: 10.1523/JNEUROSCI.2356-09.2009.

20.

Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury.

Herrera JJ, Sundberg LM, Zentilin L, Giacca M, Narayana PA.

J Neurotrauma. 2010 Nov;27(11):2067-76. doi: 10.1089/neu.2010.1403. Epub 2010 Oct 28.

Supplemental Content

Support Center