Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 295

1.

A kinesin motor in a force-producing conformation.

Heuston E, Bronner CE, Kull FJ, Endow SA.

BMC Struct Biol. 2010 Jul 5;10:19. doi: 10.1186/1472-6807-10-19.

2.

Altered nucleotide-microtubule coupling and increased mechanical output by a kinesin mutant.

Liu HL, Hallen MA, Endow SA.

PLoS One. 2012;7(10):e47148. doi: 10.1371/journal.pone.0047148. Epub 2012 Oct 16.

3.

Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.

Zhang P, Dai W, Hahn J, Gilbert SP.

Proc Natl Acad Sci U S A. 2015 May 19;112(20):6359-64. doi: 10.1073/pnas.1505531112. Epub 2015 May 4.

4.

A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd.

Endres NF, Yoshioka C, Milligan RA, Vale RD.

Nature. 2006 Feb 16;439(7078):875-8. Epub 2005 Dec 28.

5.

Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd.

Yun M, Bronner CE, Park CG, Cha SS, Park HW, Endow SA.

EMBO J. 2003 Oct 15;22(20):5382-9.

6.

The C-terminus of kinesin-14 Ncd is a crucial component of the force generating mechanism.

Szczęsna E, Kasprzak AA.

FEBS Lett. 2012 Mar 23;586(6):854-8. doi: 10.1016/j.febslet.2012.02.011. Epub 2012 Feb 16.

7.

Determinants of kinesin motor polarity.

Endow SA, Waligora KW.

Science. 1998 Aug 21;281(5380):1200-2.

8.

Structural Basis of Backwards Motion in Kinesin-1-Kinesin-14 Chimera: Implication for Kinesin-14 Motility.

Yamagishi M, Shigematsu H, Yokoyama T, Kikkawa M, Sugawa M, Aoki M, Shirouzu M, Yajima J, Nitta R.

Structure. 2016 Aug 2;24(8):1322-1334. doi: 10.1016/j.str.2016.05.021. Epub 2016 Jul 21.

9.

Two-state displacement by the kinesin-14 Ncd stalk.

Hallen MA, Liang ZY, Endow SA.

Biophys Chem. 2011 Mar;154(2-3):56-65. doi: 10.1016/j.bpc.2011.01.001. Epub 2011 Jan 13.

10.

A metal switch for controlling the activity of molecular motor proteins.

Cochran JC, Zhao YC, Wilcox DE, Kull FJ.

Nat Struct Mol Biol. 2011 Dec 25;19(1):122-7. doi: 10.1038/nsmb.2190.

11.

Neck-motor interactions trigger rotation of the kinesin stalk.

Liu HL, Pemble CW 4th, Endow SA.

Sci Rep. 2012;2:236. doi: 10.1038/srep00236. Epub 2012 Jan 27.

12.

Removal of tightly bound ADP induces distinct structural changes of the two tryptophan-containing regions of the ncd motor domain.

Morii H, Shimizu T, Mizuno N, Edamatsu M, Ogawa K, Shimizu Y, Toyoshima YY.

J Biochem. 2005 Jul;138(1):95-104.

PMID:
16046453
13.

Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant.

Song H, Endow SA.

Nature. 1998 Dec 10;396(6711):587-90.

PMID:
9859995
14.

Kar3Vik1 uses a minus-end directed powerstroke for movement along microtubules.

Cope J, Rank KC, Gilbert SP, Rayment I, Hoenger A.

PLoS One. 2013;8(1):e53792. doi: 10.1371/journal.pone.0053792. Epub 2013 Jan 14.

15.

Crystal structure of the motor domain of the kinesin-related motor ncd.

Sablin EP, Kull FJ, Cooke R, Vale RD, Fletterick RJ.

Nature. 1996 Apr 11;380(6574):555-9.

PMID:
8606780
16.

A mutant of the motor protein kinesin that moves in both directions on microtubules.

Endow SA, Higuchi H.

Nature. 2000 Aug 24;406(6798):913-6.

PMID:
10972296
17.

Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules.

Naber N, Minehardt TJ, Rice S, Chen X, Grammer J, Matuska M, Vale RD, Kollman PA, Car R, Yount RG, Cooke R, Pate E.

Science. 2003 May 2;300(5620):798-801.

18.

Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.

Atherton J, Farabella I, Yu IM, Rosenfeld SS, Houdusse A, Topf M, Moores CA.

Elife. 2014 Sep 10;3:e03680. doi: 10.7554/eLife.03680.

19.

Large conformational changes in a kinesin motor catalyzed by interaction with microtubules.

Hirose K, Akimaru E, Akiba T, Endow SA, Amos LA.

Mol Cell. 2006 Sep 15;23(6):913-23.

20.

Supplemental Content

Support Center