Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

High-energy electron transfer dissociation (HE-ETD) using alkali metal targets for sequence analysis of post-translational peptides.

Hayakawa S, Matsumoto S, Hashimoto M, Iwamoto K, Nagao H, Toyoda M, Shigeri Y, Tajiri M, Wada Y.

J Am Soc Mass Spectrom. 2010 Sep;21(9):1482-9. doi: 10.1016/j.jasms.2010.05.010. Epub 2010 Jun 9.

2.

Study of the dissociation of a charge-reduced phosphopeptide formed by electron transfer from an alkali metal target.

Hayakawa S, Hashimoto M, Nagao H, Awazu K, Toyoda M, Ichihara T, Shigeri Y.

Rapid Commun Mass Spectrom. 2008;22(4):567-72. doi: 10.1002/rcm.3399.

PMID:
18229886
3.

Study of Ion Dynamics by Electron Transfer Dissociation: Alkali Metals as Targets.

Hayakawa S.

Mass Spectrom (Tokyo). 2017;6(1):A0062. doi: 10.5702/massspectrometry.A0062. Epub 2017 Sep 22.

4.

Negative electron transfer dissociation of deprotonated phosphopeptide anions: choice of radical cation reagent and competition between electron and proton transfer.

Huzarska M, Ugalde I, Kaplan DA, Hartmer R, Easterling ML, Polfer NC.

Anal Chem. 2010 Apr 1;82(7):2873-8. doi: 10.1021/ac9028592.

PMID:
20210298
6.

On performing simultaneous electron transfer dissociation and collision-induced dissociation on multiply protonated peptides in a linear ion trap.

Campbell JL, Hager JW, Le Blanc JC.

J Am Soc Mass Spectrom. 2009 Sep;20(9):1672-83. doi: 10.1016/j.jasms.2009.05.009. Epub 2009 May 20.

7.

Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation.

Viner RI, Zhang T, Second T, Zabrouskov V.

J Proteomics. 2009 Jul 21;72(5):874-85. doi: 10.1016/j.jprot.2009.02.005. Epub 2009 Feb 24.

PMID:
19245863
8.

Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides.

Kim MS, Zhong J, Kandasamy K, Delanghe B, Pandey A.

Proteomics. 2011 Jun;11(12):2568-72. doi: 10.1002/pmic.201000547. Epub 2011 May 20.

9.

Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors.

Swaney DL, McAlister GC, Wirtala M, Schwartz JC, Syka JE, Coon JJ.

Anal Chem. 2007 Jan 15;79(2):477-85.

10.

Enhanced characterization of singly protonated phosphopeptide ions by femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fs-LID-MS/MS).

Smith SA, Kalcic CL, Safran KA, Stemmer PM, Dantus M, Reid GE.

J Am Soc Mass Spectrom. 2010 Dec;21(12):2031-40. doi: 10.1016/j.jasms.2010.08.016. Epub 2010 Oct 1.

11.

Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra.

Sun RX, Dong MQ, Song CQ, Chi H, Yang B, Xiu LY, Tao L, Jing ZY, Liu C, Wang LH, Fu Y, He SM.

J Proteome Res. 2010 Dec 3;9(12):6354-67. doi: 10.1021/pr100648r. Epub 2010 Nov 12.

PMID:
20883037
12.

Effects of electron-transfer coupled with collision-induced dissociation (ET/CID) on doubly charged peptides and phosphopeptides.

Liu CW, Lai CC.

J Am Soc Mass Spectrom. 2011 Jan;22(1):57-66. doi: 10.1007/s13361-010-0020-9. Epub 2011 Jan 27.

PMID:
21472544
13.

Peptide and protein quantification using iTRAQ with electron transfer dissociation.

Phanstiel D, Zhang Y, Marto JA, Coon JJ.

J Am Soc Mass Spectrom. 2008 Sep;19(9):1255-62. doi: 10.1016/j.jasms.2008.05.023. Epub 2008 Jun 17.

14.

Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry.

Molina H, Horn DM, Tang N, Mathivanan S, Pandey A.

Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2199-204. Epub 2007 Feb 7.

15.

Gas-Phase Rearrangement in Lysine Phosphorylated Peptides During Electron-Transfer Dissociation Tandem Mass Spectrometry.

Bertran-Vicente J, Schümann M, Hackenberger CP, Krause E.

Anal Chem. 2015 Jul 21;87(14):6990-4. doi: 10.1021/acs.analchem.5b01389. Epub 2015 Jun 29.

PMID:
26110354
16.

Effects of charge state and cationizing agent on the electron capture dissociation of a peptide.

Iavarone AT, Paech K, Williams ER.

Anal Chem. 2004 Apr 15;76(8):2231-8.

17.

Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X)n and (X)nK/R Peptides Provide Benefits for Peptide Sequencing in Proteomics and Phosphoproteomics.

Tsiatsiani L, Giansanti P, Scheltema RA, van den Toorn H, Overall CM, Altelaar AF, Heck AJ.

J Proteome Res. 2017 Feb 3;16(2):852-861. doi: 10.1021/acs.jproteome.6b00825. Epub 2016 Dec 2.

PMID:
28111955
18.

Activated ion ETD performed in a modified collision cell on a hybrid QLT-Oribtrap mass spectrometer.

Ledvina AR, Rose CM, McAlister GC, Syka JE, Westphall MS, Griep-Raming J, Schwartz JC, Coon JJ.

J Am Soc Mass Spectrom. 2013 Nov;24(11):1623-33. doi: 10.1007/s13361-013-0621-1. Epub 2013 May 16.

19.

Comparison of CID, ETD and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides.

Cook SL, Zimmermann CM, Singer D, Fedorova M, Hoffmann R, Jackson GP.

J Mass Spectrom. 2012 Jun;47(6):786-94. doi: 10.1002/jms.3023.

PMID:
22707171
20.

Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides.

Yang F, Wu S, Stenoien DL, Zhao R, Monroe ME, Gritsenko MA, Purvine SO, Polpitiya AD, Tolić N, Zhang Q, Norbeck AD, Orton DJ, Moore RJ, Tang K, Anderson GA, Pasa-Tolić L, Camp DG 2nd, Smith RD.

Anal Chem. 2009 May 15;81(10):4137-43. doi: 10.1021/ac802605m.

Supplemental Content

Support Center