Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

A novel adaptive mechanical-wetting lens for visible and near infrared imaging.

Xu S, Liu Y, Ren H, Wu ST.

Opt Express. 2010 Jun 7;18(12):12430-5. doi: 10.1364/OE.18.012430.

PMID:
20588370
2.

Adaptive liquid lens actuated by photo-polymer.

Xu S, Ren H, Lin YJ, Moharam MG, Wu ST, Tabiryan N.

Opt Express. 2009 Sep 28;17(20):17590-5. doi: 10.1364/OE.17.017590.

PMID:
19907543
3.

Design of a zoom lens without motorized optical elements.

Peng R, Chen J, Zhu C, Zhuang S.

Opt Express. 2007 May 28;15(11):6664-9.

PMID:
19546976
4.
5.

Adaptive liquid microlenses activated by stimuli-responsive hydrogels.

Dong L, Agarwal AK, Beebe DJ, Jiang H.

Nature. 2006 Aug 3;442(7102):551-4.

PMID:
16885981
6.

Adaptive liquid lens actuated by liquid crystal pistons.

Xu S, Ren H, Wu ST.

Opt Express. 2012 Dec 17;20(27):28518-23. doi: 10.1364/OE.20.028518.

PMID:
23263088
7.

Three-dimensional adaptive microscopy using embedded liquid lens.

Murali S, Thompson KP, Rolland JP.

Opt Lett. 2009 Jan 15;34(2):145-7.

PMID:
19148236
8.

Electrowetting-actuated zoom lens with spherical-interface liquid lenses.

Peng R, Chen J, Zhuang S.

J Opt Soc Am A Opt Image Sci Vis. 2008 Nov;25(11):2644-50.

PMID:
18978841
9.

Analysis of two-element zoom systems based on variable power lenses.

Miks A, Novak J.

Opt Express. 2010 Mar 29;18(7):6797-810. doi: 10.1364/OE.18.006797.

PMID:
20389699
10.

Liquid-crystal lens with a focal length that is variable in a wide range.

Ye M, Wang B, Sato S.

Appl Opt. 2004 Dec 10;43(35):6407-12.

PMID:
15617277
11.

Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator.

Son HM, Kim MY, Lee YJ.

Opt Express. 2009 Aug 3;17(16):14339-50.

PMID:
19654841
12.

Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually.

Choi J, Kim TH, Kong HJ, Lee JU.

Appl Opt. 2006 May 20;45(15):3430-41.

PMID:
16708087
13.

Design of spherically corrected, achromatic variable-focus liquid lenses.

Reichelt S, Zappe H.

Opt Express. 2007 Oct 17;15(21):14146-54.

PMID:
19550687
14.

High-performance fluidic adaptive lenses.

Zhang DY, Justis N, Lien V, Berdichevsky Y, Lo YH.

Appl Opt. 2004 Feb 1;43(4):783-7.

PMID:
14960070
15.

Adaptive beam shaping by controlled thermal lensing in optical elements.

Arain MA, Quetschke V, Gleason J, Williams LF, Rakhmanov M, Lee J, Cruz RJ, Mueller G, Tanner DB, Reitze DH.

Appl Opt. 2007 Apr 20;46(12):2153-65.

PMID:
17415383
16.

The effect of ionizing radiation on intraocular lenses.

Ellerin BE, Nisce LZ, Roberts CW, Thornell C, Sabbas A, Wang H, Li PM, Nori D.

Int J Radiat Oncol Biol Phys. 2001 Sep 1;51(1):184-208.

PMID:
11516869
17.

Variable-focus liquid microlenses with adjustable 3-D curved housings.

Hu B, Xue L, Yang P, Han Y.

Langmuir. 2010 May 4;26(9):6350-6. doi: 10.1021/la903969h.

PMID:
20000365
18.

Novel dual-function lens with microscopic and vari-focus capability incorporated with an aberration-suppression aspheric lens.

Fuh YK, Chen PW.

Opt Express. 2015 Aug 24;23(17):21771-85. doi: 10.1364/OE.23.021771.

PMID:
26368154
19.

Assessment of a liquid lens enabled in vivo optical coherence microscope.

Murali S, Meemon P, Lee KS, Kuhn WP, Thompson KP, Rolland JP.

Appl Opt. 2010 Jun 1;49(16):D145-56. doi: 10.1364/AO.49.00D145.

PMID:
20517356
20.

Effects of optical variables in immersion lens-based near-field optics.

Kim WC, Yoon YJ, Choi H, Park NC, Park YP.

Opt Express. 2008 Sep 1;16(18):13933-48.

PMID:
18773004
Items per page

Supplemental Content

Support Center