Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 304


Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease.

Cummings DM, Cepeda C, Levine MS.

ASN Neuro. 2010 Jun 18;2(3):e00036. doi: 10.1042/AN20100007.


Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease.

Indersmitten T, Tran CH, Cepeda C, Levine MS.

J Neurophysiol. 2015 Apr 1;113(7):2953-66. doi: 10.1152/jn.01056.2014. Epub 2015 Feb 11.


Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.

Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I.

Neurobiol Dis. 2008 Jul;31(1):80-8. doi: 10.1016/j.nbd.2008.03.010. Epub 2008 Apr 16.


Reduced striatal acetylcholine efflux in the R6/2 mouse model of Huntington's disease: an examination of the role of altered inhibitory and excitatory mechanisms.

Farrar AM, Callahan JW, Abercrombie ED.

Exp Neurol. 2011 Dec;232(2):119-25. doi: 10.1016/j.expneurol.2011.08.010. Epub 2011 Aug 16.


A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease.

Cummings DM, Alaghband Y, Hickey MA, Joshi PR, Hong SC, Zhu C, Ando TK, André VM, Cepeda C, Watson JB, Levine MS.

J Neurophysiol. 2012 Jan;107(2):677-91. doi: 10.1152/jn.00762.2011. Epub 2011 Nov 9.


Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice.

Milnerwood AJ, Kaufman AM, Sepers MD, Gladding CM, Zhang L, Wang L, Fan J, Coquinco A, Qiao JY, Lee H, Wang YT, Cynader M, Raymond LA.

Neurobiol Dis. 2012 Oct;48(1):40-51. doi: 10.1016/j.nbd.2012.05.013. Epub 2012 Jun 2.


Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.

Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I.

J Neurosci. 2016 Jan 6;36(1):125-41. doi: 10.1523/JNEUROSCI.1038-15.2016.


Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity.

Cowan CM, Fan MM, Fan J, Shehadeh J, Zhang LY, Graham RK, Hayden MR, Raymond LA.

J Neurosci. 2008 Nov 26;28(48):12725-35. doi: 10.1523/JNEUROSCI.4619-08.2008.


Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons.

Ma YY, Cepeda C, Chatta P, Franklin L, Evans CJ, Levine MS.

ASN Neuro. 2012 Mar 8;4(2). pii: e00077. doi: 10.1042/AN20110063.


Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice.

Naydenov AV, Sepers MD, Swinney K, Raymond LA, Palmiter RD, Stella N.

Neurobiol Dis. 2014 Nov;71:140-50. doi: 10.1016/j.nbd.2014.08.009. Epub 2014 Aug 15.


Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.

Kolodziejczyk K, Raymond LA.

Neurobiol Dis. 2016 Feb;86:62-74. doi: 10.1016/j.nbd.2015.11.020. Epub 2015 Nov 24.


Alterations in cortical excitation and inhibition in genetic mouse models of Huntington's disease.

Cummings DM, André VM, Uzgil BO, Gee SM, Fisher YE, Cepeda C, Levine MS.

J Neurosci. 2009 Aug 19;29(33):10371-86. doi: 10.1523/JNEUROSCI.1592-09.2009.


Synaptic scaling up in medium spiny neurons of aged BACHD mice: A slow-progression model of Huntington's disease.

Rocher AB, Gubellini P, Merienne N, Boussicault L, Petit F, Gipchtein P, Jan C, Hantraye P, Brouillet E, Bonvento G.

Neurobiol Dis. 2016 Feb;86:131-9. doi: 10.1016/j.nbd.2015.10.016. Epub 2015 Nov 25.


Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice.

Klapstein GJ, Fisher RS, Zanjani H, Cepeda C, Jokel ES, Chesselet MF, Levine MS.

J Neurophysiol. 2001 Dec;86(6):2667-77.


Genetic mouse models of Huntington's disease: focus on electrophysiological mechanisms.

Cepeda C, Cummings DM, André VM, Holley SM, Levine MS.

ASN Neuro. 2010 Apr 7;2(2):e00033. doi: 10.1042/AN20090058. Review.


Multiple sources of striatal inhibition are differentially affected in Huntington's disease mouse models.

Cepeda C, Galvan L, Holley SM, Rao SP, André VM, Botelho EP, Chen JY, Watson JB, Deisseroth K, Levine MS.

J Neurosci. 2013 Apr 24;33(17):7393-406. doi: 10.1523/JNEUROSCI.2137-12.2013.


Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.

Buren C, Parsons MP, Smith-Dijak A, Raymond LA.

Neurobiol Dis. 2016 Mar;87:80-90. doi: 10.1016/j.nbd.2015.12.009. Epub 2015 Dec 19.


Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.

Hansson O, Castilho RF, Korhonen L, Lindholm D, Bates GP, Brundin P.

J Neurochem. 2001 Aug;78(4):694-703.


Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.

Starling AJ, André VM, Cepeda C, de Lima M, Chandler SH, Levine MS.

J Neurosci Res. 2005 Nov 1;82(3):377-86.


Supplemental Content

Support Center