Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Mechanistic investigation of the inhibition of Abeta42 assembly and neurotoxicity by Abeta42 C-terminal fragments.

Li H, Monien BH, Lomakin A, Zemel R, Fradinger EA, Tan M, Spring SM, Urbanc B, Xie CW, Benedek GB, Bitan G.

Biochemistry. 2010 Aug 3;49(30):6358-64. doi: 10.1021/bi100773g.

2.

Biophysical characterization of Abeta42 C-terminal fragments: inhibitors of Abeta42 neurotoxicity.

Li H, Monien BH, Fradinger EA, Urbanc B, Bitan G.

Biochemistry. 2010 Feb 16;49(6):1259-67. doi: 10.1021/bi902075h.

3.

Structural basis for Aβ1–42 toxicity inhibition by Aβ C-terminal fragments: discrete molecular dynamics study.

Urbanc B, Betnel M, Cruz L, Li H, Fradinger EA, Monien BH, Bitan G.

J Mol Biol. 2011 Jul 8;410(2):316-28. doi: 10.1016/j.jmb.2011.05.021. Epub 2011 May 23.

4.

A two-step strategy for structure-activity relationship studies of N-methylated aβ42 C-terminal fragments as aβ42 toxicity inhibitors.

Li H, Zemel R, Lopes DH, Monien BH, Bitan G.

ChemMedChem. 2012 Mar 5;7(3):515-22. doi: 10.1002/cmdc.201100584. Epub 2012 Feb 3.

5.

Aβ(39-42) modulates Aβ oligomerization but not fibril formation.

Gessel MM, Wu C, Li H, Bitan G, Shea JE, Bowers MT.

Biochemistry. 2012 Jan 10;51(1):108-17. doi: 10.1021/bi201520b. Epub 2011 Dec 23.

6.

Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions Play a Key Role in Their Inhibitory Activity?

Zheng X, Wu C, Liu D, Li H, Bitan G, Shea JE, Bowers MT.

J Phys Chem B. 2016 Mar 3;120(8):1615-23. doi: 10.1021/acs.jpcb.5b08177. Epub 2015 Oct 16.

7.

C-terminal peptides coassemble into Abeta42 oligomers and protect neurons against Abeta42-induced neurotoxicity.

Fradinger EA, Monien BH, Urbanc B, Lomakin A, Tan M, Li H, Spring SM, Condron MM, Cruz L, Xie CW, Benedek GB, Bitan G.

Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14175-80. doi: 10.1073/pnas.0807163105. Epub 2008 Sep 8.

8.

Non-toxic conformer of amyloid β may suppress amyloid β-induced toxicity in rat primary neurons: implications for a novel therapeutic strategy for Alzheimer's disease.

Izuo N, Murakami K, Sato M, Iwasaki M, Izumi Y, Shimizu T, Akaike A, Irie K, Kume T.

Biochem Biophys Res Commun. 2013 Aug 16;438(1):1-5. doi: 10.1016/j.bbrc.2013.05.106. Epub 2013 Jun 4.

PMID:
23747423
9.

Comparison of neurotoxicity of different aggregated forms of Aβ40, Aβ42 and Aβ43 in cell cultures.

Fu L, Sun Y, Guo Y, Chen Y, Yu B, Zhang H, Wu J, Yu X, Kong W, Wu H.

J Pept Sci. 2017 Mar;23(3):245-251. doi: 10.1002/psc.2975. Epub 2017 Feb 16.

PMID:
28211253
10.

Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils.

Cui L, Zhang Y, Cao H, Wang Y, Teng T, Ma G, Li Y, Li K, Zhang Y.

J Alzheimers Dis. 2013;37(1):19-28. doi: 10.3233/JAD-130164.

PMID:
23727899
11.

Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species.

Jan A, Adolfsson O, Allaman I, Buccarello AL, Magistretti PJ, Pfeifer A, Muhs A, Lashuel HA.

J Biol Chem. 2011 Mar 11;286(10):8585-96. doi: 10.1074/jbc.M110.172411. Epub 2010 Dec 14.

12.

Toxicity inhibitors protect lipid membranes from disruption by Aβ42.

Malishev R, Nandi S, Kolusheva S, Levi-Kalisman Y, Klärner FG, Schrader T, Bitan G, Jelinek R.

ACS Chem Neurosci. 2015 Nov 18;6(11):1860-9. doi: 10.1021/acschemneuro.5b00200. Epub 2015 Sep 9.

13.

Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3.

Koh SH, Noh MY, Kim SH.

Brain Res. 2008 Jan 10;1188:254-62. Epub 2007 Nov 1.

PMID:
18031715
14.

Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity.

Xiong N, Dong XY, Zheng J, Liu FF, Sun Y.

ACS Appl Mater Interfaces. 2015 Mar 18;7(10):5650-62. doi: 10.1021/acsami.5b00915. Epub 2015 Mar 3.

PMID:
25700145
15.
16.

Identification of novel short peptide inhibitors of soluble 37/48 kDa oligomers of amyloid β42.

Kawasaki T, Onodera K, Kamijo S.

Biosci Biotechnol Biochem. 2011;75(8):1496-501. Epub 2011 Aug 7.

17.

Validation and Characterization of a Novel Peptide That Binds Monomeric and Aggregated β-Amyloid and Inhibits the Formation of Neurotoxic Oligomers.

Barr RK, Verdile G, Wijaya LK, Morici M, Taddei K, Gupta VB, Pedrini S, Jin L, Nicolazzo JA, Knock E, Fraser PE, Martins RN.

J Biol Chem. 2016 Jan 8;291(2):547-59. doi: 10.1074/jbc.M115.679993. Epub 2015 Nov 4.

18.

Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation.

Feng Y, Wang XP, Yang SG, Wang YJ, Zhang X, Du XT, Sun XX, Zhao M, Huang L, Liu RT.

Neurotoxicology. 2009 Nov;30(6):986-95. doi: 10.1016/j.neuro.2009.08.013. Epub 2009 Sep 8.

PMID:
19744518
19.

The structure of Abeta42 C-terminal fragments probed by a combined experimental and theoretical study.

Wu C, Murray MM, Bernstein SL, Condron MM, Bitan G, Shea JE, Bowers MT.

J Mol Biol. 2009 Mar 27;387(2):492-501. doi: 10.1016/j.jmb.2009.01.029. Epub 2009 Jan 23.

20.

C-terminal tetrapeptides inhibit Aβ42-induced neurotoxicity primarily through specific interaction at the N-terminus of Aβ42.

Li H, Du Z, Lopes DH, Fradinger EA, Wang C, Bitan G.

J Med Chem. 2011 Dec 22;54(24):8451-60. doi: 10.1021/jm200982p. Epub 2011 Nov 28.

Supplemental Content

Support Center