Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 169

1.

Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme.

Zhang Y, Zhu X, Torelli AT, Lee M, Dzikovski B, Koralewski RM, Wang E, Freed J, Krebs C, Ealick SE, Lin H.

Nature. 2010 Jun 17;465(7300):891-6. doi: 10.1038/nature09138. Erratum in: Nature. 2011 May 26;473(7348):544.

2.

Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe-4S] enzyme required for diphthamide biosynthesis.

Zhu X, Dzikovski B, Su X, Torelli AT, Zhang Y, Ealick SE, Freed JH, Lin H.

Mol Biosyst. 2011 Jan;7(1):74-81. doi: 10.1039/c0mb00076k. Epub 2010 Oct 8.

3.

Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis.

Dong M, Su X, Dzikovski B, Dando EE, Zhu X, Du J, Freed JH, Lin H.

J Am Chem Soc. 2014 Feb 5;136(5):1754-7. doi: 10.1021/ja4118957. Epub 2014 Jan 22.

4.

Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.

Dong M, Horitani M, Dzikovski B, Freed JH, Ealick SE, Hoffman BM, Lin H.

J Am Chem Soc. 2017 Apr 26;139(16):5680-5683. doi: 10.1021/jacs.7b01712. Epub 2017 Apr 13.

5.

Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis.

Dong M, Kathiresan V, Fenwick MK, Torelli AT, Zhang Y, Caranto JD, Dzikovski B, Sharma A, Lancaster KM, Freed JH, Ealick SE, Hoffman BM, Lin H.

Science. 2018 Mar 16;359(6381):1247-1250. doi: 10.1126/science.aao6595.

PMID:
29590073
6.

Reconstitution of diphthine synthase activity in vitro.

Zhu X, Kim J, Su X, Lin H.

Biochemistry. 2010 Nov 9;49(44):9649-57. doi: 10.1021/bi100812h.

7.

Organometallic Complex Formed by an Unconventional Radical S-Adenosylmethionine Enzyme.

Dong M, Horitani M, Dzikovski B, Pandelia ME, Krebs C, Freed JH, Hoffman BM, Lin H.

J Am Chem Soc. 2016 Aug 10;138(31):9755-8. doi: 10.1021/jacs.6b04155. Epub 2016 Aug 2.

8.

Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis.

Dong M, Zhang Y, Lin H.

Biochemistry. 2018 Jun 26;57(25):3454-3459. doi: 10.1021/acs.biochem.8b00287. Epub 2018 May 10.

PMID:
29708734
9.

Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis.

Dong M, Zhang Y, Lin H.

Methods Enzymol. 2018;606:421-438. doi: 10.1016/bs.mie.2018.04.001.

PMID:
30097101
10.

Auxiliary iron-sulfur cofactors in radical SAM enzymes.

Lanz ND, Booker SJ.

Biochim Biophys Acta. 2015 Jun;1853(6):1316-34. doi: 10.1016/j.bbamcr.2015.01.002. Epub 2015 Jan 15. Review.

11.

Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes.

Stich TA, Myers WK, Britt RD.

Acc Chem Res. 2014 Aug 19;47(8):2235-43. doi: 10.1021/ar400235n. Epub 2014 Jul 3.

12.

Identification and function of auxiliary iron-sulfur clusters in radical SAM enzymes.

Lanz ND, Booker SJ.

Biochim Biophys Acta. 2012 Nov;1824(11):1196-212. doi: 10.1016/j.bbapap.2012.07.009. Epub 2012 Jul 28. Review.

PMID:
22846545
13.

4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S](+2) cluster that interacts with the pyruvate co-substrate.

Perche-Letuvée P, Kathirvelu V, Berggren G, Clemancey M, Latour JM, Maurel V, Douki T, Armengaud J, Mulliez E, Fontecave M, Garcia-Serres R, Gambarelli S, Atta M.

J Biol Chem. 2012 Nov 30;287(49):41174-85. doi: 10.1074/jbc.M112.405019. Epub 2012 Oct 5.

14.

Crystal structure of SAM-dependent methyltransferase from Pyrococcus horikoshii.

Pampa KJ, Madan Kumar S, Hema MK, Kumara K, Naveen S, Kunishima N, Lokanath NK.

Acta Crystallogr F Struct Biol Commun. 2017 Dec 1;73(Pt 12):706-712. doi: 10.1107/S2053230X17016648. Epub 2017 Nov 24.

PMID:
29199993
15.

Biochemistry: A radically different enzyme.

Broderick JB.

Nature. 2010 Jun 17;465(7300):877-8. doi: 10.1038/465877a. No abstract available.

16.

The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes.

Jarrett JT.

J Biol Chem. 2015 Feb 13;290(7):3972-9. doi: 10.1074/jbc.R114.599308. Epub 2014 Dec 4. Review.

17.
18.

RlmN and AtsB as models for the overproduction and characterization of radical SAM proteins.

Lanz ND, Grove TL, Gogonea CB, Lee KH, Krebs C, Booker SJ.

Methods Enzymol. 2012;516:125-52. doi: 10.1016/B978-0-12-394291-3.00030-7.

PMID:
23034227
19.

Structural diversity in the AdoMet radical enzyme superfamily.

Dowling DP, Vey JL, Croft AK, Drennan CL.

Biochim Biophys Acta. 2012 Nov;1824(11):1178-95. doi: 10.1016/j.bbapap.2012.04.006. Epub 2012 Apr 28. Review.

20.

Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.

Buis JM, Broderick JB.

Arch Biochem Biophys. 2005 Jan 1;433(1):288-96. Review.

PMID:
15581584

Supplemental Content

Support Center