Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.

Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA, Hackett M, Leigh JA.

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5. doi: 10.1073/pnas.1003653107. Epub 2010 Jun 1.

2.

VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.

Costa KC, Lie TJ, Xia Q, Leigh JA.

J Bacteriol. 2013 Nov;195(22):5160-5. doi: 10.1128/JB.00895-13. Epub 2013 Sep 13.

3.

Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.

Lupa B, Hendrickson EL, Leigh JA, Whitman WB.

Appl Environ Microbiol. 2008 Nov;74(21):6584-90. doi: 10.1128/AEM.01455-08. Epub 2008 Sep 12.

4.

Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis.

Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA.

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15473-8. Epub 2012 Aug 7.

5.

H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis.

Costa KC, Lie TJ, Jacobs MA, Leigh JA.

MBio. 2013 Feb 26;4(2). pii: e00062-13. doi: 10.1128/mBio.00062-13.

6.

Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis.

Sattler C, Wolf S, Fersch J, Goetz S, Rother M.

Mol Genet Genomics. 2013 Sep;288(9):413-24. doi: 10.1007/s00438-013-0756-6. Epub 2013 Jun 26.

PMID:
23801407
7.

Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.

Richards MA, Lie TJ, Zhang J, Ragsdale SW, Leigh JA, Price ND.

J Bacteriol. 2016 Nov 18;198(24):3379-3390. Print 2016 Dec 15.

8.

Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.

Liu P, Yang Y, Lü Z, Lu Y.

Appl Environ Microbiol. 2014 Aug;80(15):4668-76.

9.
10.

Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis.

Costa KC, Yoon SH, Pan M, Burn JA, Baliga NS, Leigh JA.

J Bacteriol. 2013 Apr;195(7):1456-62. doi: 10.1128/JB.02141-12. Epub 2013 Jan 18.

11.
12.

Proton translocation in methanogens.

Welte C, Deppenmeier U.

Methods Enzymol. 2011;494:257-80. doi: 10.1016/B978-0-12-385112-3.00013-5.

PMID:
21402219
13.

Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea.

Hendrickson EL, Haydock AK, Moore BC, Whitman WB, Leigh JA.

Proc Natl Acad Sci U S A. 2007 May 22;104(21):8930-4. Epub 2007 May 14.

14.

A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen.

Yoon SH, Turkarslan S, Reiss DJ, Pan M, Burn JA, Costa KC, Lie TJ, Slagel J, Moritz RL, Hackett M, Leigh JA, Baliga NS.

Genome Res. 2013 Nov;23(11):1839-51. doi: 10.1101/gr.153916.112. Epub 2013 Oct 2.

15.
16.
17.

Electron Bifurcation Makes the Puzzle Pieces Fall Energetically into Place in Methanogenic Energy Conservation.

Lubner CE, Peters JW.

Chembiochem. 2017 Dec 5;18(23):2295-2297. doi: 10.1002/cbic.201700533. Epub 2017 Nov 2.

PMID:
28986941
18.

Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis.

Kröninger L, Berger S, Welte C, Deppenmeier U.

FEBS J. 2016 Feb;283(3):472-83. doi: 10.1111/febs.13594. Epub 2015 Dec 17.

19.
20.

Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.

Kaster AK, Moll J, Parey K, Thauer RK.

Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2981-6. doi: 10.1073/pnas.1016761108. Epub 2011 Jan 24.

Supplemental Content

Support Center