Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Effects of host plant and genetic background on the fitness costs of resistance to Bacillus thuringiensis.

Raymond B, Wright DJ, Bonsall MB.

Heredity (Edinb). 2011 Feb;106(2):281-8. doi: 10.1038/hdy.2010.65. Epub 2010 Jun 2.

2.

Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis.

Raymond B, Sayyed AH, Wright DJ.

Proc Biol Sci. 2005 Jul 22;272(1571):1519-24.

3.
4.

Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae).

Zhu X, Yang Y, Wu Q, Wang S, Xie W, Guo Z, Kang S, Xia J, Zhang Y.

Pest Manag Sci. 2016 Feb;72(2):289-97. doi: 10.1002/ps.3991. Epub 2015 Mar 13.

PMID:
25684167
5.

Genetic resistance to Bacillus thuringiensis alters feeding behaviour in the cabbage looper, Trichoplusia ni.

Shikano I, Cory JS.

PLoS One. 2014 Jan 21;9(1):e85709. doi: 10.1371/journal.pone.0085709. eCollection 2014.

6.

Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella.

Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ.

Appl Environ Microbiol. 2004 Dec;70(12):7010-7.

7.

Reversal of resistance to Bacillus thuringiensis in Plutella xylostella.

Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ.

Proc Natl Acad Sci U S A. 1994 May 10;91(10):4120-4.

9.

Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae.

Schuler TH, Potting RP, Denholm I, Clark SJ, Clark AJ, Stewart CN, Poppy GM.

Transgenic Res. 2003 Jun;12(3):351-61.

PMID:
12779123
10.

Modeling the integration of parasitoid, insecticide, and transgenic insecticidal crop for the long-term control of an insect pest.

Onstad DW, Liu X, Chen M, Roush R, Shelton AM.

J Econ Entomol. 2013 Jun;106(3):1103-11.

PMID:
23865173
13.

Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm: fitness costs and incomplete resistance.

Carrière Y, Ellers-Kirk C, Biggs RW, Nyboer ME, Unnithan GC, Dennehy TJ, Tabashnik BE.

J Econ Entomol. 2006 Dec;99(6):1925-35.

PMID:
17195656
14.

The impact of strain diversity and mixed infections on the evolution of resistance to Bacillus thuringiensis.

Raymond B, Wright DJ, Crickmore N, Bonsall MB.

Proc Biol Sci. 2013 Sep 4;280(1769):20131497. doi: 10.1098/rspb.2013.1497. Print 2013 Oct 22.

15.

Insect pathogens as biological control agents: Back to the future.

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS.

J Invertebr Pathol. 2015 Nov;132:1-41. doi: 10.1016/j.jip.2015.07.009. Epub 2015 Jul 27. Review.

PMID:
26225455
16.

Transgenic Bt-producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives.

Mason P, Braun L, Warwick SI, Zhu B, Stewart CN Jr.

Environ Biosafety Res. 2003 Oct-Dec;2(4):263-76.

PMID:
15612282
17.
18.

Effect of maize lines on larval fitness costs of Cry1F resistance in the European corn borer (Lepidoptera: Crambidae).

Petzold-Maxwell JL, Siegfried BD, Hellmich RL, Abel CA, Coates BS, Spencer TA, Gassmann AJ.

J Econ Entomol. 2014 Apr;107(2):764-72.

PMID:
24772559
19.

Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution.

Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM.

Nat Biotechnol. 2003 Dec;21(12):1493-7. Epub 2003 Nov 9.

PMID:
14608363
20.

Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C.

Zhao JZ, Li YX, Collins HL, Cao J, Earle ED, Shelton AM.

J Econ Entomol. 2001 Dec;94(6):1547-52.

PMID:
11777062

Supplemental Content

Support Center