Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 54

1.

Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply.

Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon SO, Cantley LC, Blenis J.

Mol Cell. 2010 May 28;38(4):487-99. doi: 10.1016/j.molcel.2010.05.007.

2.

Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex.

Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, Kim BY, Erikson RL, Cantley LC, Choo AY, Blenis J.

Mol Cell. 2013 Jan 10;49(1):172-85. doi: 10.1016/j.molcel.2012.10.003. Epub 2012 Nov 8.

3.

Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner.

Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G.

Cell Metab. 2010 May 5;11(5):390-401. doi: 10.1016/j.cmet.2010.03.014.

4.

Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb.

Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH, Jeon H, Kim DH, Suh PG, Ryu SH.

Mol Cell Biol. 2009 Jul;29(14):3991-4001. doi: 10.1128/MCB.00165-09. Epub 2009 May 18.

5.

Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response.

Babcock JT, Nguyen HB, He Y, Hendricks JW, Wek RC, Quilliam LA.

J Biol Chem. 2013 May 31;288(22):15687-98. doi: 10.1074/jbc.M112.431056. Epub 2013 Apr 23.

6.

Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors.

Huang J, Wu S, Wu CL, Manning BD.

Cancer Res. 2009 Aug 1;69(15):6107-14. doi: 10.1158/0008-5472.CAN-09-0975. Epub 2009 Jul 14.

7.

Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner.

Bilanges B, Argonza-Barrett R, Kolesnichenko M, Skinner C, Nair M, Chen M, Stokoe D.

Mol Cell Biol. 2007 Aug;27(16):5746-64. Epub 2007 Jun 11.

8.

Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1.

Bachar E, Ariav Y, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G.

PLoS One. 2009;4(3):e4954. doi: 10.1371/journal.pone.0004954. Epub 2009 Mar 23.

9.

The TSC1-TSC2 complex: a molecular switchboard controlling cell growth.

Huang J, Manning BD.

Biochem J. 2008 Jun 1;412(2):179-90. doi: 10.1042/BJ20080281. Review.

10.

mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization.

Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L, Williams DA, Kwiatkowski DJ, DePinho RA.

Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19384-9. doi: 10.1073/pnas.0810584105. Epub 2008 Dec 3.

11.

Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling.

Li M, Zhao L, Liu J, Liu A, Jia C, Ma D, Jiang Y, Bai X.

Cell Signal. 2010 Oct;22(10):1469-76. doi: 10.1016/j.cellsig.2010.05.015.

PMID:
20639120
12.

IFI16 induction by glucose restriction in human fibroblasts contributes to autophagy through activation of the ATM/AMPK/p53 pathway.

Duan X, Ponomareva L, Veeranki S, Choubey D.

PLoS One. 2011 May 5;6(5):e19532. doi: 10.1371/journal.pone.0019532.

13.

Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling.

Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA.

Breast Cancer Res Treat. 2013 Aug;141(1):67-78. doi: 10.1007/s10549-013-2668-x. Epub 2013 Aug 21.

PMID:
23963659
14.

Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling.

Stevens C, Lin Y, Harrison B, Burch L, Ridgway RA, Sansom O, Hupp T.

J Biol Chem. 2009 Jan 2;284(1):334-44. doi: 10.1074/jbc.M805165200. Epub 2008 Oct 30.

15.

LKB1 and AMP-activated protein kinase control of mTOR signalling and growth.

Shaw RJ.

Acta Physiol (Oxf). 2009 May;196(1):65-80. doi: 10.1111/j.1748-1716.2009.01972.x. Epub 2009 Feb 19. Review.

16.

Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1.

Zhou J, Brugarolas J, Parada LF.

Hum Mol Genet. 2009 Nov 15;18(22):4428-41. doi: 10.1093/hmg/ddp398. Epub 2009 Aug 19.

PMID:
19692352
17.

Loss of TSC2 confers resistance to ceramide and nutrient deprivation.

Guenther GG, Liu G, Ramirez MU, McMonigle RJ, Kim SM, McCracken AN, Joo Y, Ushach I, Nguyen NL, Edinger AL.

Oncogene. 2014 Apr 3;33(14):1776-87. doi: 10.1038/onc.2013.139. Epub 2013 Apr 22.

18.

The TSC1-TSC2 complex is required for proper activation of mTOR complex 2.

Huang J, Dibble CC, Matsuzaki M, Manning BD.

Mol Cell Biol. 2008 Jun;28(12):4104-15. doi: 10.1128/MCB.00289-08. Epub 2008 Apr 14.

19.

A novel Hap1-Tsc1 interaction regulates neuronal mTORC1 signaling and morphogenesis in the brain.

Mejia LA, Litterman N, Ikeuchi Y, de la Torre-Ubieta L, Bennett EJ, Zhang C, Harper JW, Bonni A.

J Neurosci. 2013 Nov 13;33(46):18015-21. doi: 10.1523/JNEUROSCI.2290-13.2013.

20.

Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration.

Reith RM, Way S, McKenna J 3rd, Haines K, Gambello MJ.

Neurobiol Dis. 2011 Jul;43(1):113-22. doi: 10.1016/j.nbd.2011.02.014. Epub 2011 Mar 17.

Supplemental Content

Support Center