Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression.

Kim K, Yeatts A, Dean D, Fisher JP.

Tissue Eng Part B Rev. 2010 Oct;16(5):523-39. doi: 10.1089/ten.TEB.2010.0171. Review.

2.

The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells.

Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP.

Biomaterials. 2011 May;32(15):3750-63. doi: 10.1016/j.biomaterials.2011.01.016.

3.

State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.

Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC.

J Tissue Eng Regen Med. 2007 Jul-Aug;1(4):245-60. Review.

PMID:
18038415
4.

3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.

Chen G, Dong C, Yang L, Lv Y.

ACS Appl Mater Interfaces. 2015 Jul 29;7(29):15790-802. doi: 10.1021/acsami.5b02662. Epub 2015 Jul 17.

PMID:
26151287
5.

The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model.

Roosa SM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ.

J Biomed Mater Res A. 2010 Jan;92(1):359-68. doi: 10.1002/jbm.a.32381.

PMID:
19189391
6.

Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.

Roohani-Esfahani SI, Lu ZF, Li JJ, Ellis-Behnke R, Kaplan DL, Zreiqat H.

Acta Biomater. 2012 Jan;8(1):302-12. doi: 10.1016/j.actbio.2011.10.009. Epub 2011 Oct 13.

PMID:
22023750
8.

Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

Rodrigues MT, Martins A, Dias IR, Viegas CA, Neves NM, Gomes ME, Reis RL.

J Tissue Eng Regen Med. 2012 Nov;6(10):e24-30. doi: 10.1002/term.499. Epub 2012 Mar 27.

PMID:
22451140
9.

Role of pore size and morphology in musculo-skeletal tissue regeneration.

Perez RA, Mestres G.

Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:922-39. doi: 10.1016/j.msec.2015.12.087. Epub 2015 Dec 31. Review.

PMID:
26838923
10.

Modulation of cell differentiation in bone tissue engineering constructs cultured in a bioreactor.

Holtorf HL, Jansen JA, Mikos AG.

Adv Exp Med Biol. 2006;585:225-41. Review.

PMID:
17120788
11.

Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.

Ni P, Fu S, Fan M, Guo G, Shi S, Peng J, Luo F, Qian Z.

Int J Nanomedicine. 2011;6:3065-75. doi: 10.2147/IJN.S25297. Epub 2011 Nov 30.

12.

In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering.

Kim J, Jeong SY, Ju YM, Yoo JJ, Smith TL, Khang G, Lee SJ, Atala A.

Biomed Mater. 2013 Feb;8(1):014107. doi: 10.1088/1748-6041/8/1/014107. Epub 2013 Jan 25.

PMID:
23353783
13.

Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

Martins AM, Pham QP, Malafaya PB, Raphael RM, Kasper FK, Reis RL, Mikos AG.

Tissue Eng Part A. 2009 Aug;15(8):1953-63. doi: 10.1089/ten.tea.2008.0023.

PMID:
19327018
14.

The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering.

Smith CA, Richardson SM, Eagle MJ, Rooney P, Board T, Hoyland JA.

J Tissue Eng Regen Med. 2015 May;9(5):595-604. doi: 10.1002/term.1934. Epub 2014 Jun 19.

PMID:
24945627
15.

Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.

Kim IG, Hwang MP, Du P, Ko J, Ha CW, Do SH, Park K.

Biomaterials. 2015 May;50:75-86. doi: 10.1016/j.biomaterials.2015.01.054. Epub 2015 Feb 16.

PMID:
25736498
16.

Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E.

Biomed Mater. 2013 Aug;8(4):045011. doi: 10.1088/1748-6041/8/4/045011. Epub 2013 Jun 27.

PMID:
23804651
17.

Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering.

Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y.

Biomaterials. 2012 Mar;33(7):2076-85. doi: 10.1016/j.biomaterials.2011.11.042. Epub 2011 Dec 15.

PMID:
22177618
18.

Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

Vikingsson L, Claessens B, Gómez-Tejedor JA, Gallego Ferrer G, Gómez Ribelles JL.

J Mech Behav Biomed Mater. 2015 Aug;48:60-9. doi: 10.1016/j.jmbbm.2015.03.021. Epub 2015 Apr 2.

PMID:
25913609
19.

Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.

Ye X, Yin X, Yang D, Tan J, Liu G.

Tissue Eng Part C Methods. 2012 Jul;18(7):545-56. doi: 10.1089/ten.TEC.2011.0470. Epub 2012 Feb 22.

PMID:
22250840
20.

Effect of scaffold design on bone morphology in vitro.

Uebersax L, Hagenmüller H, Hofmann S, Gruenblatt E, Müller R, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L.

Tissue Eng. 2006 Dec;12(12):3417-29.

PMID:
17518678

Supplemental Content

Support Center