Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

A cyclophilin A CPR1 overexpression enhances stress acquisition in Saccharomyces cerevisiae.

Kim IS, Kim HY, Shin SY, Kim YS, Lee DH, Park KM, Yoon HS.

Mol Cells. 2010 Jun;29(6):567-74. doi: 10.1007/s10059-010-0071-6. Epub 2010 May 22.

2.

Expression of yeast cyclophilin A (Cpr1) provides improved stress tolerance in Escherichia coli.

Kim IS, Shin SY, Kim YS, Kim HY, Lee DH, Park KM, Yoon HS, Jin I.

J Microbiol Biotechnol. 2010 Jun;20(6):974-7.

3.

Decarbonylated cyclophilin A Cpr1 protein protects Saccharomyces cerevisiae KNU5377Y when exposed to stress induced by menadione.

Kim IS, Jin I, Yoon HS.

Cell Stress Chaperones. 2011 Jan;16(1):1-14. doi: 10.1007/s12192-010-0215-9. Epub 2010 Aug 2.

4.

Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

Kim IS, Kim YS, Yoon HS.

Appl Microbiol Biotechnol. 2013 Apr;97(8):3519-33. doi: 10.1007/s00253-012-4410-8. Epub 2012 Oct 4.

PMID:
23053072
5.

Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae.

Yoon HS, Shin SY, Kim YS, Kim IS.

World J Microbiol Biotechnol. 2012 May;28(5):1901-15. doi: 10.1007/s11274-011-0988-8. Epub 2012 Feb 7.

PMID:
22806013
6.

Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.

Kim IS, Kim YS, Kim H, Jin I, Yoon HS.

Mol Cells. 2013 Mar;35(3):210-8. doi: 10.1007/s10059-013-2258-0. Epub 2013 Feb 18.

7.

Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase.

Lee SM, Park JW.

Arch Biochem Biophys. 1998 Nov 1;359(1):99-106.

PMID:
9799566
8.

A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress.

Kim IS, Yun HS, Park IS, Sohn HY, Iwahashi H, Jin IN.

J Biosci Bioeng. 2006 Oct;102(4):288-96.

PMID:
17116574
9.

Cyclophilin A peptidyl-prolyl isomerase activity promotes ZPR1 nuclear export.

Ansari H, Greco G, Luban J.

Mol Cell Biol. 2002 Oct;22(20):6993-7003.

10.

The effect of calnexin deletion on the expression level of binding protein (BiP) under heat stress conditions in Saccharomyces cerevisiae.

Zhang H, Hu B, Ji Y, Kato A, Song Y.

Cell Mol Biol Lett. 2008;13(4):621-31. doi: 10.2478/s11658-008-0026-5. Epub 2008 Jul 25.

PMID:
18661113
11.

Prolyl isomerases in yeast.

Arevalo-Rodriguez M, Wu X, Hanes SD, Heitman J.

Front Biosci. 2004 Sep 1;9:2420-46. Review.

PMID:
15353296
13.

Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.

Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

Appl Microbiol Biotechnol. 2006 Apr;70(3):346-57. Epub 2005 Nov 11.

PMID:
16283296
14.

Variants of peroxiredoxins expression in response to hydroperoxide stress.

Mitsumoto A, Takanezawa Y, Okawa K, Iwamatsu A, Nakagawa Y.

Free Radic Biol Med. 2001 Mar 15;30(6):625-35.

PMID:
11295360
15.
16.
17.
18.

A new antioxidant with alkyl hydroperoxide defense properties in yeast.

Lee J, Spector D, Godon C, Labarre J, Toledano MB.

J Biol Chem. 1999 Feb 19;274(8):4537-44.

19.
20.

Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function.

Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY.

Cell. 2004 May 28;117(5):625-35.

Supplemental Content

Support Center