Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 191

1.

Methylation profile of TP53 regulatory pathway and mtDNA alterations in breast cancer patients lacking TP53 mutations.

Barekati Z, Radpour R, Kohler C, Zhang B, Toniolo P, Lenner P, Lv Q, Zheng H, Zhong XY.

Hum Mol Genet. 2010 Aug 1;19(15):2936-46. doi: 10.1093/hmg/ddq199. Epub 2010 May 12.

PMID:
20466735
2.

Number of somatic mutations in the mitochondrial D-loop region indicates poor prognosis in breast cancer, independent of TP53 mutation.

Kuo SJ, Chen M, Ma GC, Chen ST, Chang SP, Lin WY, Chen YC, Lee TH, Lin TT, Liu CS.

Cancer Genet Cytogenet. 2010 Sep;201(2):94-101. doi: 10.1016/j.cancergencyto.2010.05.013.

PMID:
20682393
3.

Wip1 over-expression correlated with TP53/p14(ARF) pathway disruption in human astrocytomas.

Wang P, Rao J, Yang H, Zhao H, Yang L.

J Surg Oncol. 2011 Nov 1;104(6):679-84. doi: 10.1002/jso.22004. Epub 2011 Jun 21.

PMID:
21695702
4.

Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course.

Watanabe T, Katayama Y, Yoshino A, Komine C, Yokoyama T.

Clin Cancer Res. 2003 Oct 15;9(13):4884-90.

5.

CHEK2 mutations affecting kinase activity together with mutations in TP53 indicate a functional pathway associated with resistance to epirubicin in primary breast cancer.

Chrisanthar R, Knappskog S, Løkkevik E, Anker G, Østenstad B, Lundgren S, Berge EO, Risberg T, Mjaaland I, Maehle L, Engebretsen LF, Lillehaug JR, Lønning PE.

PLoS One. 2008 Aug 26;3(8):e3062. doi: 10.1371/journal.pone.0003062.

6.

Association of interindividual differences in p14ARF promoter methylation with single nucleotide polymorphism in primary colorectal cancer.

Kang MY, Lee BB, Ji YI, Jung EH, Chun HK, Song SY, Park SE, Park J, Kim DH.

Cancer. 2008 Apr 15;112(8):1699-707. doi: 10.1002/cncr.23335.

7.

Correlation of telomere length shortening with promoter methylation profile of p16/Rb and p53/p21 pathways in breast cancer.

Radpour R, Barekati Z, Haghighi MM, Kohler C, Asadollahi R, Torbati PM, Holzgreve W, Zhong XY.

Mod Pathol. 2010 May;23(5):763-72. doi: 10.1038/modpathol.2009.195. Epub 2010 Jan 15.

8.

Association of the germline TP53 R72P and MDM2 SNP309 variants with breast cancer survival in specific breast tumor subgroups.

van den Broek AJ, Broeks A, Horlings HM, Canisius SV, Braaf LM, Langerød A, Van't Veer LJ, Schmidt MK.

Breast Cancer Res Treat. 2011 Nov;130(2):599-608. doi: 10.1007/s10549-011-1615-y. Epub 2011 Jun 11.

PMID:
21667122
9.

Association of sporadic breast cancer with PTEN/MMAC1/TEP1 promoter hypermethylation.

Sadeq V, Isar N, Manoochehr T.

Med Oncol. 2011 Jun;28(2):420-3. doi: 10.1007/s12032-010-9473-8. Epub 2010 Mar 17.

PMID:
20237868
10.

Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer.

Muggerud AA, Rønneberg JA, Wärnberg F, Botling J, Busato F, Jovanovic J, Solvang H, Bukholm I, Børresen-Dale AL, Kristensen VN, Sørlie T, Tost J.

Breast Cancer Res. 2010;12(1):R3. doi: 10.1186/bcr2466. Epub 2010 Jan 7.

11.

Correlation between promoter methylation of p14(ARF), TMS1/ASC, and DAPK, and p53 mutation with prognosis in cholangiocarcinoma.

Xiaofang L, Kun T, Shaoping Y, Zaiqiu W, Hailong S.

World J Surg Oncol. 2012 Jan 9;10:5. doi: 10.1186/1477-7819-10-5.

12.

Epigenetic and genetic burden measures are associated with tumor characteristics in invasive breast carcinoma.

O'Sullivan DE, Johnson KC, Skinner L, Koestler DC, Christensen BC.

Epigenetics. 2016 May 3;11(5):344-53. doi: 10.1080/15592294.2016.1168673. Epub 2016 Apr 12.

13.

Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression.

Watanabe T, Katayama Y, Yoshino A, Yachi K, Ohta T, Ogino A, Komine C, Fukushima T.

Brain Pathol. 2007 Jan;17(1):5-10.

PMID:
17493032
14.

Biological significance of promoter hypermethylation of p14/ARF gene: relationships to p53 mutational status in Tunisian population with colorectal carcinoma.

Chaar I, Amara S, Elamine OE, Khiari M, Ounissi D, Khalfallah T, Ben Hmida A, Mzabi S, Bouraoui S.

Tumour Biol. 2014 Feb;35(2):1439-49. doi: 10.1007/s13277-013-1198-9. Epub 2013 Sep 25.

15.

Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer.

Radpour R, Barekati Z, Kohler C, Lv Q, Bürki N, Diesch C, Bitzer J, Zheng H, Schmid S, Zhong XY.

PLoS One. 2011 Jan 24;6(1):e16080. doi: 10.1371/journal.pone.0016080.

16.

Inactivation of the INK4a/ARF locus and p53 in sporadic extrahepatic bile duct cancers and bile tract cancer cell lines.

Caca K, Feisthammel J, Klee K, Tannapfel A, Witzigmann H, Wittekind C, Mössner J, Berr F.

Int J Cancer. 2002 Feb 1;97(4):481-8.

17.

Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome.

Bennett KL, Mester J, Eng C.

JAMA. 2010 Dec 22;304(24):2724-31. doi: 10.1001/jama.2010.1877.

18.

Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients.

Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R.

Life Sci. 2007 Apr 24;80(20):1873-81. Epub 2007 Feb 27.

PMID:
17383681
19.

Aberrant p16 promoter methylation in smokers and former smokers with nonsmall cell lung cancer.

Jarmalaite S, Kannio A, Anttila S, Lazutka JR, Husgafvel-Pursiainen K.

Int J Cancer. 2003 Oct 10;106(6):913-8.

20.

TP53, p14ARF, p16INK4a and H-ras gene molecular analysis in intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses.

Perrone F, Oggionni M, Birindelli S, Suardi S, Tabano S, Romano R, Moiraghi ML, Bimbi G, Quattrone P, Cantu G, Pierotti MA, Licitra L, Pilotti S.

Int J Cancer. 2003 Jun 10;105(2):196-203.

Supplemental Content

Support Center