Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica.

Bonaldi K, Gourion B, Fardoux J, Hannibal L, Cartieaux F, Boursot M, Vallenet D, Chaintreuil C, Prin Y, Nouwen N, Giraud E.

Mol Plant Microbe Interact. 2010 Jun;23(6):760-70. doi: 10.1094/MPMI-23-6-0760.

2.

Photosynthetic Bradyrhizobium Sp. strain ORS285 synthesizes 2-O-methylfucosylated lipochitooligosaccharides for nod gene-dependent interaction with Aeschynomene plants.

Renier A, Maillet F, Fardoux J, Poinsot V, Giraud E, Nouwen N.

Mol Plant Microbe Interact. 2011 Dec;24(12):1440-7. doi: 10.1094/MPMI-05-11-0104.

3.

Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica.

Okubo T, Fukushima S, Itakura M, Oshima K, Longtonglang A, Teaumroong N, Mitsui H, Hattori M, Hattori R, Hattori T, Minamisawa K.

Appl Environ Microbiol. 2013 Apr;79(8):2542-51. doi: 10.1128/AEM.00009-13. Epub 2013 Feb 8.

4.

Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia.

Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M.

Science. 2007 Jun 1;316(5829):1307-12.

5.

A proteomic approach of bradyrhizobium/aeschynomene root and stem symbioses reveals the importance of the fixA locus for symbiosis.

Delmotte N, Mondy S, Alunni B, Fardoux J, Chaintreuil C, Vorholt JA, Giraud E, Gourion B.

Int J Mol Sci. 2014 Feb 28;15(3):3660-70. doi: 10.3390/ijms15033660.

6.

The LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes.

Busset N, De Felice A, Chaintreuil C, Gully D, Fardoux J, Romdhane S, Molinaro A, Silipo A, Giraud E.

PLoS One. 2016 Feb 5;11(2):e0148884. doi: 10.1371/journal.pone.0148884. eCollection 2016.

7.

NodD1 and NodD2 Are Not Required for the Symbiotic Interaction of Bradyrhizobium ORS285 with Nod-Factor-Independent Aeschynomene Legumes.

Nouwen N, Fardoux J, Giraud E.

PLoS One. 2016 Jun 17;11(6):e0157888. doi: 10.1371/journal.pone.0157888. eCollection 2016.

8.

Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes.

Podlešáková K, Fardoux J, Patrel D, Bonaldi K, Novák O, Strnad M, Giraud E, Spíchal L, Nouwen N.

Mol Plant Microbe Interact. 2013 Oct;26(10):1232-8. doi: 10.1094/MPMI-03-13-0076-R.

9.
10.
11.

Bacterial RuBisCO is required for efficient Bradyrhizobium/Aeschynomene symbiosis.

Gourion B, Delmotte N, Bonaldi K, Nouwen N, Vorholt JA, Giraud E.

PLoS One. 2011;6(7):e21900. doi: 10.1371/journal.pone.0021900. Epub 2011 Jul 5.

12.

Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva.

Giraud E, Hannibal L, Fardoux J, Verméglio A, Dreyfus B.

Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14795-800.

13.

Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization.

Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer HM.

J Bacteriol. 2000 Mar;182(6):1472-80.

14.

Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions.

Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, Gyaneshwar P.

Mol Plant Microbe Interact. 2011 Apr;24(4):451-7. doi: 10.1094/MPMI-08-10-0184.

15.

Genetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand.

Noisangiam R, Teamtisong K, Tittabutr P, Boonkerd N, Toshiki U, Minamisawa K, Teaumroong N.

Appl Environ Microbiol. 2012 Sep;78(17):6236-50. doi: 10.1128/AEM.00897-12. Epub 2012 Jun 29.

16.

Aeschynomene evenia, a model plant for studying the molecular genetics of the nod-independent rhizobium-legume symbiosis.

Arrighi JF, Cartieaux F, Brown SC, Rodier-Goud M, Boursot M, Fardoux J, Patrel D, Gully D, Fabre S, Chaintreuil C, Giraud E.

Mol Plant Microbe Interact. 2012 Jul;25(7):851-61. doi: 10.1094/MPMI-02-12-0045-TA.

17.

Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium Sp. strain ORS285: the nod-dependent versus the nod-independent symbiotic interaction.

Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D, Nouwen N, Goormachtig S, Giraud E.

Mol Plant Microbe Interact. 2011 Nov;24(11):1359-71. doi: 10.1094/MPMI-04-11-0093.

18.

Genetic diversity and distribution of Bradyrhizobium and Azorhizobium strains associated with the herb legume Zornia glochidiata sampled from across Senegal.

Gueye F, Moulin L, Sylla S, Ndoye I, Béna G.

Syst Appl Microbiol. 2009 Sep;32(6):387-99. doi: 10.1016/j.syapm.2009.04.004. Epub 2009 Jun 3.

PMID:
19493641
19.

Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions.

Noel KD, Sanchez A, Fernandez L, Leemans J, Cevallos MA.

J Bacteriol. 1984 Apr;158(1):148-55.

20.

Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus.

Moulin L, Béna G, Boivin-Masson C, Stepkowski T.

Mol Phylogenet Evol. 2004 Mar;30(3):720-32.

PMID:
15012950

Supplemental Content

Support Center