Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Homeobox genes d11-d13 and a13 control mouse autopod cortical bone and joint formation.

Villavicencio-Lorini P, Kuss P, Friedrich J, Haupt J, Farooq M, Türkmen S, Duboule D, Hecht J, Mundlos S.

J Clin Invest. 2010 Jun;120(6):1994-2004. doi: 10.1172/JCI41554. Epub 2010 May 10.

2.

Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis.

Kuss P, Villavicencio-Lorini P, Witte F, Klose J, Albrecht AN, Seemann P, Hecht J, Mundlos S.

J Clin Invest. 2009 Jan;119(1):146-56. doi: 10.1172/JCI36851. Epub 2008 Dec 15.

4.

Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A.

Kuss P, Kraft K, Stumm J, Ibrahim D, Vallecillo-Garcia P, Mundlos S, Stricker S.

Dev Biol. 2014 Jan 1;385(1):83-93. doi: 10.1016/j.ydbio.2013.10.013. Epub 2013 Oct 23.

5.

The synpolydactyly homolog (spdh) mutation in the mouse -- a defect in patterning and growth of limb cartilage elements.

Albrecht AN, Schwabe GC, Stricker S, Böddrich A, Wanker EE, Mundlos S.

Mech Dev. 2002 Mar;112(1-2):53-67.

6.

A new spontaneous mouse mutation of Hoxd13 with a polyalanine expansion and phenotype similar to human synpolydactyly.

Johnson KR, Sweet HO, Donahue LR, Ward-Bailey P, Bronson RT, Davisson MT.

Hum Mol Genet. 1998 Jun;7(6):1033-8.

PMID:
9580668
7.

A molecular pathogenesis for transcription factor associated poly-alanine tract expansions.

Albrecht AN, Kornak U, Böddrich A, Süring K, Robinson PN, Stiege AC, Lurz R, Stricker S, Wanker EE, Mundlos S.

Hum Mol Genet. 2004 Oct 15;13(20):2351-9. Epub 2004 Aug 27.

PMID:
15333588
8.
9.

Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly.

Cocquempot O, Brault V, Babinet C, Herault Y.

Genetics. 2009 Sep;183(1):23-30. doi: 10.1534/genetics.109.104695. Epub 2009 Jun 22.

10.

The Role of Hox in Pisiform and Calcaneus Growth Plate Formation and the Nature of the Zeugopod/Autopod Boundary.

Reno PL, Kjosness KM, Hines JE.

J Exp Zool B Mol Dev Evol. 2016 Jul;326(5):303-21. doi: 10.1002/jez.b.22688. Epub 2016 Aug 10.

PMID:
27507801
11.

Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities.

Kawakami Y, Uchiyama Y, Rodriguez Esteban C, Inenaga T, Koyano-Nakagawa N, Kawakami H, Marti M, Kmita M, Monaghan-Nichols P, Nishinakamura R, Izpisua Belmonte JC.

Development. 2009 Feb;136(4):585-94. doi: 10.1242/dev.027748.

12.

Possible roles of Runx1 and Sox9 in incipient intramembranous ossification.

Yamashiro T, Wang XP, Li Z, Oya S, Aberg T, Fukunaga T, Kamioka H, Speck NA, Takano-Yamamoto T, Thesleff I.

J Bone Miner Res. 2004 Oct;19(10):1671-7. Epub 2004 Aug 3.

13.

Gene expression reveals unique skeletal patterning in the limb of the direct-developing frog, Eleutherodactylus coqui.

Kerney R, Hanken J.

Evol Dev. 2008 Jul-Aug;10(4):439-48. doi: 10.1111/j.1525-142X.2008.00255.x.

PMID:
18638321
14.
15.
16.

Plzf regulates limb and axial skeletal patterning.

Barna M, Hawe N, Niswander L, Pandolfi PP.

Nat Genet. 2000 Jun;25(2):166-72.

PMID:
10835630
17.
18.

Selective deficiency of the "bone-related" Runx2-II unexpectedly preserves osteoblast-mediated skeletogenesis.

Xiao ZS, Hjelmeland AB, Quarles LD.

J Biol Chem. 2004 May 7;279(19):20307-13. Epub 2004 Mar 7.

19.

Novel mutations of the HOXD13 gene in hand and foot malformations.

Nakano K, Sakai N, Yamazaki Y, Watanabe H, Yamada N, Sezaki K, Susami T, Tokunaga K, Takato T, Uchinuma E.

Int Surg. 2007 Sep-Oct;92(5):287-95.

PMID:
18399101
20.

Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning.

Salsi V, Vigano MA, Cocchiarella F, Mantovani R, Zappavigna V.

Dev Biol. 2008 May 15;317(2):497-507. doi: 10.1016/j.ydbio.2008.02.048. Epub 2008 Mar 8.

Supplemental Content

Support Center