Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry--a proof-of-principle study.

Griessenauer CJ, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Garris PA, Lee KH.

J Neurosurg. 2010 Sep;113(3):656-65. doi: 10.3171/2010.3.JNS091627.

2.

Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.

Bledsoe JM, Kimble CJ, Covey DP, Blaha CD, Agnesi F, Mohseni P, Whitlock S, Johnson DM, Horne A, Bennet KE, Lee KH, Garris PA.

J Neurosurg. 2009 Oct;111(4):712-23. doi: 10.3171/2009.3.JNS081348.

3.

Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle.

Shon YM, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Blaha CD, Lee KH.

J Neurosurg. 2010 Mar;112(3):539-48. doi: 10.3171/2009.7.JNS09787.

4.

Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH.

J Neurosurg. 2009 Oct;111(4):701-11. doi: 10.3171/2009.3.JNS0990.

5.

Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback.

Van Gompel JJ, Chang SY, Goerss SJ, Kim IY, Kimble C, Bennet KE, Lee KH.

Neurosurg Focus. 2010 Aug;29(2):E6. doi: 10.3171/2010.5.FOCUS10110. Review.

6.

Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation.

Chang SY, Kimble CJ, Kim I, Paek SB, Kressin KR, Boesche JB, Whitlock SV, Eaker DR, Kasasbeh A, Horne AE, Blaha CD, Bennet KE, Lee KH.

J Neurosurg. 2013 Dec;119(6):1556-65. doi: 10.3171/2013.8.JNS122142. Epub 2013 Oct 11. Erratum in: J Neurosurg. 2014 May;120(5):1258.

7.

Wireless fast-scan cyclic voltammetry measurement of histamine using WINCS--a proof-of-principle study.

Chang SY, Jay T, Muñoz J, Kim I, Lee KH.

Analyst. 2012 May 7;137(9):2158-65. doi: 10.1039/c2an16038b. Epub 2012 Mar 14.

8.

Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle.

Garris PA, Ensman R, Poehlman J, Alexander A, Langley PE, Sandberg SG, Greco PG, Wightman RM, Rebec GV.

J Neurosci Methods. 2004 Dec 30;140(1-2):103-15.

PMID:
15589340
9.

Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

Kimble CJ, Johnson DM, Winter BA, Whitlock SV, Kressin KR, Horne AE, Robinson JC, Bledsoe JM, Tye SJ, Chang SY, Agnesi F, Griessenauer CJ, Covey D, Shon YM, Bennet KE, Garris PA, Lee KH.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4856-9. doi: 10.1109/IEMBS.2009.5332773.

10.

Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry.

Koehne JE, Marsh M, Boakye A, Douglas B, Kim IY, Chang SY, Jang DP, Bennet KE, Kimble C, Andrews R, Meyyappan M, Lee KH.

Analyst. 2011 May 7;136(9):1802-5. doi: 10.1039/c1an15025a. Epub 2011 Mar 8.

11.

Real-time processing of fast-scan cyclic voltammetry (FSCV) data using a field-programmable gate array (FPGA).

Bozorgzadeh B, Covey DP, Heidenreich BA, Garris PA, Mohseni P.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2036-9. doi: 10.1109/EMBC.2014.6944016.

PMID:
25570384
12.

Wireless neurochemical monitoring in humans.

Kasasbeh A, Lee K, Bieber A, Bennet K, Chang SY.

Stereotact Funct Neurosurg. 2013;91(3):141-7. doi: 10.1159/000345111. Epub 2013 Feb 27. Review.

13.

Neurochemostat: A Neural Interface SoC With Integrated Chemometrics for Closed-Loop Regulation of Brain Dopamine.

Bozorgzadeh B, Schuweiler DR, Bobak MJ, Garris PA, Mohseni P.

IEEE Trans Biomed Circuits Syst. 2016 Jun;10(3):654-67. doi: 10.1109/TBCAS.2015.2453791. Epub 2015 Sep 16.

PMID:
26390501
14.

Using fast-scan cyclic voltammetry to evaluate striatal dopamine release elicited by subthalamic nucleus stimulation.

Covey DP, Garris PA.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:3306-9. doi: 10.1109/IEMBS.2009.5333768.

PMID:
19964299
15.

Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carboplatin.

Kaplan SV, Limbocker RA, Gehringer RC, Divis JL, Osterhaus GL, Newby MD, Sofis MJ, Jarmolowicz DP, Newman BD, Mathews TA, Johnson MA.

ACS Chem Neurosci. 2016 Jun 15;7(6):689-99. doi: 10.1021/acschemneuro.5b00029. Epub 2016 May 22.

16.

Diamond microelectrodes and CMOS microelectronics for wireless transmission of fast-scan cyclic voltammetry.

Roham M, Halpern JM, Martin HB, Chiel HJ, Mohseni P.

Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6044-7.

PMID:
18003392
17.

Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release.

Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS.

Analyst. 2010 Jul;135(7):1556-63. doi: 10.1039/c0an00114g. Epub 2010 May 13.

18.

Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.

Li YT, Wickens JR, Huang YL, Pan WH, Chen FY, Chen JJ.

J Neural Eng. 2013 Aug;10(4):046007. doi: 10.1088/1741-2560/10/4/046007. Epub 2013 Jun 14.

PMID:
23770892
19.

Dopamine measurement during prolonged deep brain stimulation: a proof-of-principle study of paired pulse voltammetry.

Paek SB, Knight EJ, Chang SY, Lujan JL, Jang DP, Bennet KE, Lee KH.

Biomed Eng Lett. 2013 Mar 1;3(1):22-31.

20.

Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain.

Bunin MA, Prioleau C, Mailman RB, Wightman RM.

J Neurochem. 1998 Mar;70(3):1077-87.

Supplemental Content

Support Center