Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

Midgut juice components affect pore formation by the Bacillus thuringiensis insecticidal toxin Cry9Ca.

Brunet JF, Vachon V, Marsolais M, Van Rie J, Schwartz JL, Laprade R.

J Invertebr Pathol. 2010 Jul;104(3):203-8. doi: 10.1016/j.jip.2010.04.007. Epub 2010 Apr 24.

PMID:
20399787
2.

Effects of mutations within surface-exposed loops in the pore-forming domain of the Cry9Ca insecticidal toxin of Bacillus thuringiensis.

Brunet JF, Vachon V, Marsolais M, Arnaut G, Van Rie J, Marceau L, Larouche G, Vincent C, Schwartz JL, Laprade R.

J Membr Biol. 2010 Dec;238(1-3):21-31. doi: 10.1007/s00232-010-9315-9. Epub 2010 Nov 17.

PMID:
21082167
3.

Pore-forming properties of the Bacillus thuringiensis toxin Cry9Ca in Manduca sexta brush border membrane vesicles.

Brunet JF, Vachon V, Juteau M, Van Rie J, Larouche G, Vincent C, Schwartz JL, Laprade R.

Biochim Biophys Acta. 2010 Jun;1798(6):1111-8. doi: 10.1016/j.bbamem.2010.02.006. Epub 2010 Feb 11.

4.

Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa.

Girard F, Vachon V, Préfontaine G, Marceau L, Su Y, Larouche G, Vincent C, Schwartz JL, Masson L, Laprade R.

Appl Environ Microbiol. 2008 May;74(9):2565-72. doi: 10.1128/AEM.00094-08. Epub 2008 Mar 7.

5.

Effect of insect larval midgut proteases on the activity of Bacillus thuringiensis Cry toxins.

Fortier M, Vachon V, Frutos R, Schwartz JL, Laprade R.

Appl Environ Microbiol. 2007 Oct;73(19):6208-13. Epub 2007 Aug 10.

6.
8.

Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins.

Loseva O, Ibrahim M, Candas M, Koller CN, Bauer LS, Bulla LA Jr.

Insect Biochem Mol Biol. 2002 May;32(5):567-77.

PMID:
11891133
9.
10.

Cry6Aa1, a Bacillus thuringiensis nematocidal and insecticidal toxin, forms pores in planar lipid bilayers at extremely low concentrations and without the need of proteolytic processing.

Fortea E, Lemieux V, Potvin L, Chikwana V, Griffin S, Hey T, McCaskill D, Narva K, Tan SY, Xu X, Vachon V, Schwartz JL.

J Biol Chem. 2017 Aug 11;292(32):13122-13132. doi: 10.1074/jbc.M116.765941. Epub 2017 Jun 16.

PMID:
28623231
11.

Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.

Johnson DE, Brookhart GL, Kramer KJ, Barnett BD, McGaughey WH.

J Invertebr Pathol. 1990 Mar;55(2):235-44.

PMID:
2181026
13.
14.

Solubilization, activation, and insecticidal activity of Bacillus thuringiensis serovar thompsoni HD542 crystal proteins.

Naimov S, Boncheva R, Karlova R, Dukiandjiev S, Minkov I, de Maagd RA.

Appl Environ Microbiol. 2008 Dec;74(23):7145-51. doi: 10.1128/AEM.00752-08. Epub 2008 Oct 3.

15.
16.

Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins.

Denolf P, Hendrickx K, Van Damme J, Jansens S, Peferoen M, Degheele D, Van Rie J.

Eur J Biochem. 1997 Sep 15;248(3):748-61.

17.

Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion.

Pardo-López L, Gómez I, Rausell C, Sanchez J, Soberón M, Bravo A.

Biochemistry. 2006 Aug 29;45(34):10329-36.

PMID:
16922508
19.

Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC.

Keller M, Sneh B, Strizhov N, Prudovsky E, Regev A, Koncz C, Schell J, Zilberstein A.

Insect Biochem Mol Biol. 1996 Apr;26(4):365-73.

PMID:
8814783
20.

Supplemental Content

Support Center