Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Dispersive concentrating systems based on transmission phase holograms for solar applications.

Bloss WH, Griesinger M, Reinhardt ER.

Appl Opt. 1982 Oct 15;21(20):3739-42. doi: 10.1364/AO.21.003739.

PMID:
20396309
2.

Single element spectral splitting solar concentrator for multiple cells CPV system.

Stefancich M, Zayan A, Chiesa M, Rampino S, Roncati D, Kimerling L, Michel J.

Opt Express. 2012 Apr 9;20(8):9004-18. doi: 10.1364/OE.20.009004.

PMID:
22513611
3.

Frequency and phase swept holograms in spectral hole-burning materials.

Bernet S, Altner SB, Graf FR, Maniloff ES, Renn A, Wild UP.

Appl Opt. 1995 Aug 1;34(22):4674-84. doi: 10.1364/AO.34.004674.

PMID:
21052301
4.

Critical interfaces in organic solar cells and their influence on the open-circuit voltage.

Potscavage WJ Jr, Sharma A, Kippelen B.

Acc Chem Res. 2009 Nov 17;42(11):1758-67. doi: 10.1021/ar900139v.

PMID:
19708653
5.

High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers.

O'Connor B, Nothern D, Pipe KP, Shtein M.

Opt Express. 2010 Sep 13;18 Suppl 3:A432-43. doi: 10.1364/OE.18.00A432.

PMID:
21165073
6.

Visible light water splitting using dye-sensitized oxide semiconductors.

Youngblood WJ, Lee SH, Maeda K, Mallouk TE.

Acc Chem Res. 2009 Dec 21;42(12):1966-73. doi: 10.1021/ar9002398.

PMID:
19905000
7.
8.

Luminescence nanocrystals for solar cell enhancement.

Liu SM, Chen W, Wang ZG.

J Nanosci Nanotechnol. 2010 Mar;10(3):1418-29.

PMID:
20355533
9.

Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics.

Fang YY, Xie J, Tolle J, Roucka R, D'Costa VR, Chizmeshya AV, Menendez J, Kouvetakis J.

J Am Chem Soc. 2008 Nov 26;130(47):16095-102. doi: 10.1021/ja806636c.

PMID:
19032100
10.

The bleaching of holographic diffraction gratings for maximum efficiency.

Latta JN.

Appl Opt. 1968 Dec 1;7(12):2409-16. doi: 10.1364/AO.7.002409.

PMID:
20069013
11.

Molecular bulk heterojunctions: an emerging approach to organic solar cells.

Roncali J.

Acc Chem Res. 2009 Nov 17;42(11):1719-30. doi: 10.1021/ar900041b.

PMID:
19580313
12.

Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

Imahori H, Umeyama T, Ito S.

Acc Chem Res. 2009 Nov 17;42(11):1809-18. doi: 10.1021/ar900034t.

PMID:
19408942
13.

Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

Heremans P, Cheyns D, Rand BP.

Acc Chem Res. 2009 Nov 17;42(11):1740-7. doi: 10.1021/ar9000923.

PMID:
19751055
14.

Thermodynamic efficiency of solar concentrators.

Shatz N, Bortz J, Winston R.

Opt Express. 2010 Apr 26;18 Suppl 1:A5-A16. doi: 10.1364/OE.18.0000A5.

PMID:
20588573
15.

Thermodynamic efficiency of solar concentrators.

Shatz N, Bortz J, Winston R.

Opt Express. 2010 Apr 26;18(9):A5-16.

PMID:
20607882
16.

Organic photovoltaic cells based on ZnO thin film electrodes.

Ghica C, Ion L, Epurescu G, Nistor L, Antohe S, Dinescu M.

J Nanosci Nanotechnol. 2010 Feb;10(2):1322-6.

PMID:
20352794
17.

Efficient organic photovoltaic diodes based on doped pentacene.

Schon JH, Kloc C, Bucher E, Batlogg B.

Nature. 2000 Jan 27;403(6768):408-10. Retraction in: Schön JH, Kloc Ch, Bucher E, Batlogg B. Nature. 2003 Mar 6;422(6927):93.

PMID:
10667788
18.
19.

Optical waveguide enhanced photovoltaics.

Rühle S, Greenwald S, Koren E, Zaban A.

Opt Express. 2008 Dec 22;16(26):21801-6.

PMID:
19104613
20.

A photovoltaic device structure based on internal electron emission.

McFarland EW, Tang J.

Nature. 2003 Feb 6;421(6923):616-8.

PMID:
12571591

Supplemental Content

Support Center