Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Vacuum laser-driven acceleration by Airy beams.

Li JX, Zang WP, Tian JG.

Opt Express. 2010 Mar 29;18(7):7300-6. doi: 10.1364/OE.18.007300.

PMID:
20389751
2.

Vacuum electron acceleration driven by two crossed Airy beams.

Li JX, Fan XL, Zang WP, Tian JG.

Opt Lett. 2011 Mar 1;36(5):648-50. doi: 10.1364/OL.36.000648.

PMID:
21368936
3.

Analysis of electron capture acceleration channel in an Airy beam.

Li JX, Zang WP, Tian JG.

Opt Lett. 2010 Oct 1;35(19):3258-60. doi: 10.1364/OL.35.003258.

PMID:
20890352
4.

Analysis of Gaussian beam and Bessel beam driven laser accelerators.

Hafizi B, Ganguly AK, Ting A, Moore CI, Sprangle P.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt B):4779-92.

PMID:
11970344
5.

Persistence and breakdown of Airy beams driven by an initial nonlinearity.

Hu Y, Huang S, Zhang P, Lou C, Xu J, Chen Z.

Opt Lett. 2010 Dec 1;35(23):3952-4. doi: 10.1364/OL.35.003952.

PMID:
21124576
6.

Dual Airy beam.

Hwang CY, Choi D, Kim KY, Lee B.

Opt Express. 2010 Oct 25;18(22):23504-16. doi: 10.1364/OE.18.023504.

PMID:
21164693
7.

Airy-like beam transverse acceleration control by rainbow effect.

Deng H, Yuan L.

Opt Lett. 2014 Feb 15;39(4):1089-92. doi: 10.1364/OL.39.001089.

PMID:
24562285
8.

Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal.

Luo D, Dai HT, Sun XW.

Opt Express. 2013 Dec 16;21(25):31318-23. doi: 10.1364/OE.21.031318.

PMID:
24514706
9.

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding.

Geddes CG, Toth CS, Van Tilborg J, Esarey E, Schroeder CB, Bruhwiler D, Nieter C, Cary J, Leemans WP.

Nature. 2004 Sep 30;431(7008):538-41.

PMID:
15457252
10.

Two-color-laser-driven direct electron acceleration in infinite vacuum.

Wong LJ, Kärtner FX.

Opt Lett. 2011 Mar 15;36(6):957-9. doi: 10.1364/OL.36.000957.

PMID:
21403741
11.

Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam.

Dai L, Li JX, Zang WP, Tian JG.

Opt Express. 2011 May 9;19(10):9303-8. doi: 10.1364/OE.19.009303.

PMID:
21643185
12.

Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam.

Wong LJ, Kärtner FX.

Opt Express. 2010 Nov 22;18(24):25035-51. doi: 10.1364/OE.18.025035.

PMID:
21164849
13.

Vacuum electron acceleration and bunch compression by a flat-top laser beam.

Wang W, Wang PX, Ho YK, Kong Q, Gu Y, Wang SJ.

Rev Sci Instrum. 2007 Sep;78(9):093103.

PMID:
17902943
14.

Nonparaxial diffraction analysis of Airy and SAiry beams.

Carretero L, Acebal P, Blaya S, García C, Fimia A, Madrigal R, Murciano A.

Opt Express. 2009 Dec 7;17(25):22432-41. doi: 10.1364/OE.17.022432.

PMID:
20052167
15.

Experimental study of new laser-based alignment system at the KEK B-factory injector linear accelerator.

Suwada T, Satoh M, Kadokura E.

Rev Sci Instrum. 2010 Dec;81(12):123301. doi: 10.1063/1.3504370.

PMID:
21198015
16.

Electron acceleration by a tightly focused laser beam.

Salamin YI, Keitel CH.

Phys Rev Lett. 2002 Mar 4;88(9):095005. Epub 2002 Feb 15.

PMID:
11864020
17.

Nonparaxial Airy beams: role of evanescent waves.

Novitsky AV, Novitsky DV.

Opt Lett. 2009 Nov 1;34(21):3430-2. doi: 10.1364/OL.34.003430.

PMID:
19881617
18.

Energy gain of injected electrons subjected to an intense laser field and its magnetic field induced in plasma.

Zeng G.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt B):5950-8.

PMID:
11970498
19.

Wave analysis of Airy beams.

Kaganovsky Y, Heyman E.

Opt Express. 2010 Apr 12;18(8):8440-52. doi: 10.1364/OE.18.008440.

PMID:
20588690
20.

Accelerating finite energy Airy beams.

Siviloglou GA, Christodoulides DN.

Opt Lett. 2007 Apr 15;32(8):979-81.

PMID:
17375174

Supplemental Content

Support Center