Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

ClpX contributes to innate defense peptide resistance and virulence phenotypes of Bacillus anthracis.

McGillivray SM, Ebrahimi CM, Fisher N, Sabet M, Zhang DX, Chen Y, Haste NM, Aroian RV, Gallo RL, Guiney DG, Friedlander AM, Koehler TM, Nizet V.

J Innate Immun. 2009;1(5):494-506. doi: 10.1159/000225955. Epub 2009 Jun 18.

2.

Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice.

Wilson MK, Vergis JM, Alem F, Palmer JR, Keane-Myers AM, Brahmbhatt TN, Ventura CL, O'Brien AD.

Infect Immun. 2011 Aug;79(8):3012-9. doi: 10.1128/IAI.00205-11. Epub 2011 May 16.

3.

Novel role for the yceGH tellurite resistance genes in the pathogenesis of Bacillus anthracis.

Franks SE, Ebrahimi C, Hollands A, Okumura CY, Aroian RV, Nizet V, McGillivray SM.

Infect Immun. 2014 Mar;82(3):1132-40. doi: 10.1128/IAI.01614-13. Epub 2013 Dec 23.

4.

The Bacillus anthracis protein MprF is required for synthesis of lysylphosphatidylglycerols and for resistance to cationic antimicrobial peptides.

Samant S, Hsu FF, Neyfakh AA, Lee H.

J Bacteriol. 2009 Feb;191(4):1311-9. doi: 10.1128/JB.01345-08. Epub 2008 Dec 12.

5.

Lethal factor is not required for Bacillus anthracis virulence in guinea pigs and rabbits.

Levy H, Weiss S, Altboum Z, Schlomovitz J, Rothschild N, Blachinsky E, Kobiler D.

Microb Pathog. 2011 Nov;51(5):345-51. doi: 10.1016/j.micpath.2011.07.004. Epub 2011 Jul 20.

PMID:
21791242
6.

Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress.

Cybulski RJ Jr, Sanz P, Alem F, Stibitz S, Bull RL, O'Brien AD.

Infect Immun. 2009 Jan;77(1):274-85. doi: 10.1128/IAI.00515-08. Epub 2008 Oct 27.

7.

Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

Skoble J, Beaber JW, Gao Y, Lovchik JA, Sower LE, Liu W, Luckett W, Peterson JW, Calendar R, Portnoy DA, Lyons CR, Dubensky TW Jr.

Infect Immun. 2009 Apr;77(4):1649-63. doi: 10.1128/IAI.00530-08. Epub 2009 Jan 21.

8.

Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain.

Chitlaru T, Israeli M, Bar-Haim E, Elia U, Rotem S, Ehrlich S, Cohen O, Shafferman A.

Sci Rep. 2016 Jan 6;6:18908. doi: 10.1038/srep18908.

9.

Effective antiprotease-antibiotic treatment of experimental anthrax.

Popov SG, Popova TG, Hopkins S, Weinstein RS, MacAfee R, Fryxell KJ, Chandhoke V, Bailey C, Alibek K.

BMC Infect Dis. 2005 Apr 8;5:25.

10.

Proteolytic degradation of human antimicrobial peptide LL-37 by Bacillus anthracis may contribute to virulence.

Thwaite JE, Hibbs S, Titball RW, Atkins TP.

Antimicrob Agents Chemother. 2006 Jul;50(7):2316-22.

11.

Role of purine biosynthesis in Bacillus anthracis pathogenesis and virulence.

Jenkins A, Cote C, Twenhafel N, Merkel T, Bozue J, Welkos S.

Infect Immun. 2011 Jan;79(1):153-66. doi: 10.1128/IAI.00925-10. Epub 2010 Nov 1.

12.

The dltABCD operon of Bacillus anthracis sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity.

Fisher N, Shetron-Rama L, Herring-Palmer A, Heffernan B, Bergman N, Hanna P.

J Bacteriol. 2006 Feb;188(4):1301-9.

13.

Cathelicidin administration protects mice from Bacillus anthracis spore challenge.

Lisanby MW, Swiecki MK, Dizon BL, Pflughoeft KJ, Koehler TM, Kearney JF.

J Immunol. 2008 Oct 1;181(7):4989-5000.

14.

BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis.

Kern J, Schneewind O.

Mol Microbiol. 2010 Jan;75(2):324-32. doi: 10.1111/j.1365-2958.2009.06958.x. Epub 2009 Nov 10.

15.

Pharmacological inhibition of the ClpXP protease increases bacterial susceptibility to host cathelicidin antimicrobial peptides and cell envelope-active antibiotics.

McGillivray SM, Tran DN, Ramadoss NS, Alumasa JN, Okumura CY, Sakoulas G, Vaughn MM, Zhang DX, Keiler KC, Nizet V.

Antimicrob Agents Chemother. 2012 Apr;56(4):1854-61. doi: 10.1128/AAC.05131-11. Epub 2012 Jan 17.

16.

Comparative analysis of virulence factors secreted by Bacillus anthracis Sterne at host body temperature.

Kim SK, Shahid S, Kim SH, Park JH, Lee HT, Jung KH, Chai YG.

Lett Appl Microbiol. 2012 Apr;54(4):306-12. doi: 10.1111/j.1472-765X.2012.03209.x. Epub 2012 Feb 15.

17.

HtrA is a major virulence determinant of Bacillus anthracis.

Chitlaru T, Zaide G, Ehrlich S, Inbar I, Cohen O, Shafferman A.

Mol Microbiol. 2011 Sep;81(6):1542-59. doi: 10.1111/j.1365-2958.2011.07790.x. Epub 2011 Aug 23.

18.

Interferon-inducible CXC chemokines directly contribute to host defense against inhalational anthrax in a murine model of infection.

Crawford MA, Burdick MD, Glomski IJ, Boyer AE, Barr JR, Mehrad B, Strieter RM, Hughes MA.

PLoS Pathog. 2010 Nov 18;6(11):e1001199. doi: 10.1371/journal.ppat.1001199.

19.

Anthrax lethal toxin impairs innate immune functions of alveolar macrophages and facilitates Bacillus anthracis survival.

Ribot WJ, Panchal RG, Brittingham KC, Ruthel G, Kenny TA, Lane D, Curry B, Hoover TA, Friedlander AM, Bavari S.

Infect Immun. 2006 Sep;74(9):5029-34.

20.

Treatment of experimental anthrax with recombinant capsule depolymerase.

Scorpio A, Tobery SA, Ribot WJ, Friedlander AM.

Antimicrob Agents Chemother. 2008 Mar;52(3):1014-20. Epub 2007 Dec 26.

Supplemental Content

Support Center