Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Nucleation dynamics in two-dimensional cylindrical Ising models and chemotaxis.

Bosia C, Caselle M, Corá D.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021907. Epub 2010 Feb 8.

PMID:
20365595
2.

Receptor noise and directional sensing in eukaryotic chemotaxis.

Rappel WJ, Levine H.

Phys Rev Lett. 2008 Jun 6;100(22):228101. Epub 2008 Jun 2.

3.

Establishing direction during chemotaxis in eukaryotic cells.

Rappel WJ, Thomas PJ, Levine H, Loomis WF.

Biophys J. 2002 Sep;83(3):1361-7.

4.

Interplay of chemotaxis and chemokinesis mechanisms in bacterial dynamics.

D'Orsogna MR, Suchard MA, Chou T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021925. Epub 2003 Aug 29.

PMID:
14525024
5.

Monte Carlo tests of nucleation concepts in the lattice gas model.

Schmitz F, Virnau P, Binder K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):053302. Epub 2013 May 3.

PMID:
23767652
6.

Nucleation times in the two-dimensional Ising model.

Brendel K, Barkema GT, van Beijeren H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031601. Epub 2005 Mar 11.

PMID:
15903437
7.

Receptor noise limitations on chemotactic sensing.

Rappel WJ, Levine H.

Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19270-5. doi: 10.1073/pnas.0804702105. Epub 2008 Dec 8.

8.

Energetics of protein nucleation on rough polymeric surfaces.

Curcio E, Curcio V, Di Profio G, Fontananova E, Drioli E.

J Phys Chem B. 2010 Nov 4;114(43):13650-5. doi: 10.1021/jp106349d.

PMID:
20939543
9.

Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis.

Feng S, Zhu W.

J Theor Biol. 2014 Dec 21;363:235-46. doi: 10.1016/j.jtbi.2014.08.033. Epub 2014 Aug 27.

PMID:
25167788
10.

Nucleation theorems applied to the Ising model.

Vehkamäki H, Ford IJ.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):6483-8.

PMID:
11969633
11.

Thermodynamics and kinetics of bubble nucleation: simulation methodology.

Meadley SL, Escobedo FA.

J Chem Phys. 2012 Aug 21;137(7):074109. doi: 10.1063/1.4745082.

PMID:
22920105
12.
13.

How geometry and internal bias affect the accuracy of eukaryotic gradient sensing.

Hu B, Chen W, Rappel WJ, Levine H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 1):021917. Epub 2011 Feb 28.

14.

Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis.

Tang M, Wang M, Shi C, Iglesias PA, Devreotes PN, Huang CH.

Nat Commun. 2014 Oct 27;5:5175. doi: 10.1038/ncomms6175.

15.

Factors governing the foldability of proteins.

Klimov DK, Thirumalai D.

Proteins. 1996 Dec;26(4):411-41.

PMID:
8990496
16.

Interplay between coarsening and nucleation in an Ising model with dipolar interactions.

Cannas SA, Michelon MF, Stariolo DA, Tamarit FA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 1):051602. Epub 2008 Nov 14.

PMID:
19113136
17.

Nucleation of a stable solid from melt in the presence of multiple metastable intermediate phases: wetting, Ostwald's step rule, and vanishing polymorphs.

Santra M, Singh RS, Bagchi B.

J Phys Chem B. 2013 Oct 24;117(42):13154-63. doi: 10.1021/jp4031199. Epub 2013 Jun 12.

PMID:
23713546
18.

Heterogeneous nucleation in the low-barrier regime.

Scheifele B, Saika-Voivod I, Bowles RK, Poole PH.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042407. Epub 2013 Apr 26.

PMID:
23679429
19.

A well-balanced scheme for kinetic models of chemotaxis derived from one-dimensional local forward-backward problems.

Gosse L.

Math Biosci. 2013 Apr;242(2):117-28. doi: 10.1016/j.mbs.2012.12.009. Epub 2013 Jan 29.

PMID:
23376653
20.

Heightened sensitivity of a lattice of membrane receptors.

Duke TA, Bray D.

Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10104-8.

Supplemental Content

Support Center